ÍNDICE

1. **INTRODUCCIÓN** ... 1
 1.1. Presentación... 1
 1.2. Objetivo.. 1
 1.3. Marco normativo ... 1
 1.4. Aplicaciones de los neumáticos fuera de uso ... 2
 1.5. El polvo de caucho ... 3
 1.6. Las técnicas de utilización de po lvo de caucho en materiales bituminosos ... 3
 1.7. Evolución histórica ... 5
 1.8. Consideraciones técnicas ... 6
 1.9. Costes .. 7
 1.10. Consideraciones ambientales .. 7

2. **TÉCNICAS DE EMPLEO DE POLVO DE CAUCHO EN MATERIALES BITUMINOSOS** 9
 2.1. Introducción ... 9
 2.2. Capas del firme en las que se utiliza actualmente el polvo de caucho ... 9
 2.3. Mezclas bituminosas en capa de rodadura ... 9
 2.4. Aplicaciones de las técnicas por vía húmeda .. 11
 2.5. Mezclas bituminosas modificadas con polvo de caucho ... 13

3. **MATERIALES Y DOSIFICACIÓN DE LIGANTES Y MEZCLAS BITUMINOSAS CON POLVO DE CAUCHO** ... 15
 3.1. Materiales .. 15
 3.2. Dosificación de betunes con polvo de caucho .. 15
 3.3. Dosificación de mezclas bituminosas ... 17

4. **FABRICACIÓN DE LIGANTES Y MEZCLAS CON POLVO DE CAUCHO** .. 21
 4.1. Fabricación de betunes con caucho en el lugar de empleo .. 21
 4.2. Fabricación del betún con caucho en central .. 22
 4.3. Fabricación de mezclas bituminosas por vía húmeda ... 23
 4.4. Fabricación de mezclas bituminosas con caucho añadido al mezclador ... 23

5. **PUESTA EN OBRA** .. 25
 5.1. Transporte ... 25
 5.2. Extensión ... 25
 5.3. Juntas ... 25
 5.4. Compactación ... 25

6. **CONTROL DE CALIDAD** ... 27
 6.1. Polvo de caucho ... 27
 6.2. Betún modificado de alta viscosidad con caucho y betún modificado/mejorado con polvo de caucho .. 27
 6.3. Mezclas bituminosas ... 28

7. **REFERENCIAS BIBLIOGRÁFICAS** .. 29

ANEJOS ... 31

ANEJO 1 DEFINICIONES ... 33
ANEJO 2 ESPECIFICACIONES DEL POLVO DE CAUCHO PARA MATERIALES BITUMINOSOS 35
ANEJO 3 PROPUESTA DE ESPECIFICACIONES DE LOS BETUNES MODIFICADOS DE ALTA VISCOSIDAD CON CAUCHO .. 41
ANEJO 4 PROPUESTA DE ESPECIFICACIONES DE LOS BETUNES MODIFICADOS/MEJORADOS CON POLVO DE CAUCHO .. 49
ANEJO 5 PROPUESTA DE ESPECIFICACIONES DE LAS MEZCLAS BITUMINOSAS EN CALIENTE MODIFICADAS CON POLVO DE CAUCHO ... 51
ANEJO 6 TRAMOS CON MEZCLAS BITUMINOSAS CON POLVO DE CAUCHO (Diciembre 2005) 63
1. INTRODUCCIÓN

1.1. PRESENTACIÓN

En España se generan anualmente unas 300.000 toneladas de neumáticos fuera de uso (NFU). Este enorme volumen de residuos, junto con la normativa al respecto promulgada por la UE, ha llevado al Ministerio de Medio Ambiente a elaborar un Plan Nacional de Neumáticos Fuera de Uso. El Plan cita a la obra pública como instrumento de reciclado prioritario, siempre que la utilización de materiales del reciclado de NFU sea técnica y económicamente viable.

Entre las posibles aplicaciones en la obra pública, una de las de mayor interés es la fabricación de mezclas bituminosas para carreteras, ya que el caucho de los neumáticos comporta mejoras en su comportamiento, es más económico que otros modificadores alternativos y permite consumir una considerable cantidad de residuo.

El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3) del Ministerio de Fomento, siguiendo las directrices del citado Plan, especifica el empleo prioritario de polvo de caucho en mezclas bituminosas siempre que sea técnica y económicamente posible.

Este Manual de empleo del polvo de caucho de NFU en mezclas bituminosas pretende recoger el estado del arte en cuanto a conocimientos y experiencias de nuestro país en este campo, para ayudar a los técnicos y Administraciones responsables de carreteras a utilizar adecuadamente este material, definiendo las condiciones técnicas que permitan su empleo de acuerdo con las directrices anteriormente citadas.

1.2. OBJETIVO

El objetivo de este Manual es establecer recomendaciones sobre el empleo de los materiales obtenidos en la trituración fina del caucho procedente de neumáticos fuera de uso (polvo de caucho de NFU) en la fabricación de mezclas bituminosas en caliente para carreteras.

En el documento se indican los campos de aplicación que están ya avalados por la experiencia en España y las mejoras que se pueden esperar del empleo del polvo de caucho.

Se presentan también criterios para la selección y uso del polvo de caucho, y para la dosificación, fabricación, puesta en obra y control de calidad de las unidades de obra correspondientes. Las recomendaciones siguen la práctica contrastada en España y tratan de optimizar el empleo del polvo de caucho para conseguir los beneficios potenciales de la técnica.

1.3. MARCO NORMATIVO

Hay tres Directivas europeas que afectan a los neumáticos fuera de uso:

- La Directiva 1999/31/CE, de 26 de abril de 1999, sobre vertido de residuos, que prohíbe el vertido de neumáticos enteros en vertederos a partir del 16 de julio de 2003 y troceados a partir del 16 de julio de 2006. En ambos casos se excluyen los neumáticos de bicicleta y los neumáticos cuyo diámetro exterior sea superior a 1.400 mm.

- La Directiva 2000/53/CE, de 18 de septiembre de 2000, relativa a los vehículos al final de su vida útil, que regula la retirada de los neumáticos de los vehículos fuera de uso para fomentar el reciclado, asegurando con ello que no acaban en los vertederos.

En España, la Ley 10/1998 de residuos define el marco general para el tratamiento de los residuos generados por la sociedad. Un criterio básico es el llamado “principio de jerarquía” contemplado en el artículo 1.1. Se trata de PREVENIR en la medida de lo posible, REUTILIZAR lo que se pueda, RECICLAR lo que no se pueda utilizar y VALORIZAR energéticamente todo lo que no se pueda reciclar o reciclar.

El Plan Nacional de Neumáticos Fuera de Uso 2001-2006, adoptando como referencia los plazos
establecidos en la Directiva de vertido de residuos, prohibe la eliminación (vertido o incineración sin recuperación energética) de los neumáticos enteros a partir del 1 de enero de 2003 y el de los neumáticos troceados a partir del 1 de enero de 2006. Otras fechas y porcentajes significativos que se mencionan en el citado Plan son: valorizar al menos un 65 % en peso de los neumáticos fuera de uso procedentes de vehículos de turismo antes del 1 de enero de 2005, y reciclar al menos un 25% en peso de los neumáticos procedentes de los vehículos de turismo y de camiones antes del 1 de enero de 2007. El Plan se revisa de manera periódica, actualizando las cifras y los objetivos. En la fecha de publicación de este Manual se está redactando el Plan 2007-2012.

Por su parte, el Real Decreto 1619/2005 de 30 de diciembre sobre la gestión de neumáticos fuera de uso, tiene por objeto prevenir la generación de NFU, establecer el régimen jurídico de su producción y gestión, así como fomentar su reducción, reciclado y otras formas de valorización, con la finalidad de proteger el medioambiente.

Además, los Artículos 542 y 543 del Pliego General de Prescripciones Técnicas para Obras de Carreteras y Puentes (PG-3) establecen la prioridad del empleo de estos materiales en mezclas bituminosas, cuando la incorporación de polvo de caucho sea técnica y económicamente viable.

1.4. APLICACIONES DE LOS NEUMÁTICOS FUERA DE USO

Las posibles aplicaciones de reutilización y de reciclado de los NFU son muy variadas. Además del recauchutado, que es sin duda la principal aplicación de reutilización de los neumáticos, se pueden citar empleos de neumáticos enteros en:

- arrecifes artificiales,
- defensas de muelles o embarcaciones
- barreras sonoras, y
- como elementos de seguridad vial, entre otros.

En trozos o tiras se pueden utilizar en:

- rellenos ligeros,
- drenaje de gases en vertederos y rellenos,
- recogida de lixiviados en vertederos, y
- aislamientos térmicos.

Como material granulado y polvo tienen aplicación en:

- carreteras,
Actualmente las aplicaciones de reciclado con mayor uso de neumáticos son los campos de fútbol y los polideportivos.

Técnicas con elevado potencial de consumo de NFU son la valorización energética y las mezclas bituminosas para carreteras. De ambas, la de mayor interés según el principio de jerarquía medioambiental es la de su utilización en la fabricación de mezclas bituminosas.

1.5. EL POLVO DE CAUCHO

El polvo de caucho se obtiene por trituración de neumáticos fuera de uso.

Los neumáticos son estructuras toroidales muy complejas elaboradas con más de 200 componentes, si bien están compuestos básicamente por cauchos naturales y sintéticos, cargas reforzantes (negros de carbono y sílices), antioxidantes, materiales metálicos, textiles y otros ingredientes necesarios para el proceso de vulcanización del caucho. Las proporciones de estos componentes pueden diferir en función del fabricante y del tipo de neumático, aunque en general se aproximan a las que figuran en la tabla 1.3.

<table>
<thead>
<tr>
<th>Material</th>
<th>Turismo/Servicios</th>
<th>Camión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caño</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>Negro de carbono y silice Metal</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Metal</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Textil</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Oxido de cinc</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Azufre</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aditivos</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

En la tabla se distingue entre los neumáticos de turismo y camión por su distinto contenido de caucho, pero además se diferencian por las proporciones relativas de caucho natural y sintético, que afecta a las propiedades finales del producto. En los neumáticos de turismo el contenido de caucho natural es el orden del 65% del caucho total, mientras que en los de camión es del 72% aproximadamente.

El polvo de caucho reciclado se obtiene triturando los neumáticos enteros hasta el tamaño deseado y separando los metales y tejidos que puedan incorporar. La forma de trituración, la granulometría de las partículas y el contenido remanente de contaminantes metálico y textil afectan a las propiedades del polvo de caucho obtenido.

La utilización en mezclas bituminosas precisa que el caucho reciclado esté en forma de partículas finas de tamaños inferiores a 2 mm, o 0,5 mm, según las aplicaciones.

1.6. LAS TÉCNICAS DE UTILIZACIÓN DE POLVO DE CAUCHO EN MATERIALES BITUMINOSOS

General

La incorporación de polvo de caucho a una mezcla bituminosa modifica sus propiedades reológicas y mejora sus prestaciones como material para carreteras. Esta incorporación se puede hacer de dos maneras:

- Una de ellas es la mezcla previa del polvo de caucho con el betún para su posterior empleo como ligante en la mezcla bituminosa. Esta forma de incorporación del polvo de caucho a las mezclas bituminosas por adición previa al betún se conoce como “vía húmeda”.

En este Manual se han definido tres clases de ligantes que incorporan polvo de caucho denominados: “betún mejorado con caucho (BC)”, “betún modificado con caucho (BMC)”, y “betún modificado de alta viscosidad con caucho (BMAVC)”. Se ha pretendido así establecer tres niveles de incorporación de polvo de caucho y recoger prácticamente toda la gama de posibilidades de obtención de betunes con polvo de caucho que se utilizan en la fabricación de mezclas bituminosas, tanto fabricados en central como in situ.

Los betunes mejorados con caucho (BC) presentan características empíricas mejores que las de los betunes asfálticos y el porcentaje de polvo de caucho suele estar comprendido entre un 8 y 12%. Los betunes modificados con caucho (BMC) presentan propiedades empíricas similares a las de los betunes modificados con polímeros y la cantidad de polvo de caucho es generalmente mayor del 12% e inferior al 15%. Finalmente los betunes modificados de alta viscosidad con caucho (BMAVC) se fabrican con una mayor proporción de polvo de caucho (generalmente entre 15-22%).
El segundo procedimiento consiste en introducir el polvo de caucho directamente en el mezclador de la central de fabricación de mezclas bituminosas, junto con el betún y los áridos. El polvo de caucho actúa en parte como árido, pero las partículas más finas interaccionan con el betún modificando sus propiedades, consiguiéndose así mejorar el comportamiento de la mezcla bituminosa. Con este procedimiento se obtiene una “mezcla bituminosa modificada con polvo de caucho”. Esta forma de modificación en la que el polvo de caucho se incorpora directamente como un componente más de la mezcla bituminosa, se conoce como “vía seca”.

Utilización por vía húmeda

En la vía húmeda se fabrican los ligantes añadiendo polvo de caucho a un betún asfáltico. Cuando el polvo de caucho se incorpora a un betún a elevada temperatura, las partículas de caucho se reblaniden, absorben los componentes más ligeros del betún y se hinchan. Con el hinchamiento disminuye la distancia entre partículas y el ligante se hace más viscoso, lo que es deseable para algunas aplicaciones de los betunes. Este fenómeno de hinchamiento se suele denominar digestión o maduración. El proceso se controla mediante la medida de la viscosidad del ligante (si bien el betún modificado/mejorado con caucho es una dispersión de un sólido en un líquido y por tanto no es un líquido newtoniano, y no se trata estrictamente de una medida de viscosidad). Un betún con el 15% de polvo de caucho puede aumentar su viscosidad en un factor de 10 o más.

Las características del producto resultante de la mezcla de betún y polvo de caucho dependen de las de ambos componentes, el tamaño de las partículas de caucho y del tiempo y temperatura de mezclado. Las temperaturas elevadas, los largos tiempos de mezclado y las partículas más pequeñas de caucho producen interacciones más rápidas.

Los ligantes con polvo de caucho se pueden clasificar según el procedimiento de fabricación y según el contenido de polvo de caucho:

- Según el contenido de polvo de caucho
 Como ya se ha indicado, en las técnicas por vía húmeda se distinguen tres productos, por lo general asociados a diferente porcentaje de polvo de caucho añadido al betún. Así se entiende como “betún modificado de alta viscosidad con caucho (BMAVC)” al betún modificado que presenta alta viscosidad debido a que el porcentaje de polvo de caucho incorporado es superior al 15% en peso del ligante. Para porcentajes inferiores de polvo de caucho, el producto se conoce como “betún modificado o mejorado con caucho (BMC o BC)”. Los BMAVC contienen generalmente porcentajes de polvo de caucho en el intervalo 15-22% y se utilizan en aplicaciones en las que sea de interés un ligante de viscosidad muy elevada.
Actualmente, y por las razones señaladas, la fabricación de BMAVC se hace siempre "in situ", mientras que la de BMC y BC se puede hacer "in situ" o en central, si bien en este último caso con porcentajes de caucho generalmente inferiores al 15%, por la dificultades que presenta la manipulación de productos con elevada viscosidad.

Utilización por vía seca

En los procedimientos por vía seca el polvo de caucho se introduce directamente en el mezclador de la central de fabricación de mezclas bituminosas como si fuese un árido más.

En el proceso por vía seca pueden diferenciarse dos técnicas, según el tamaño máximo del polvo de caucho.

La primera utiliza tamaños máximos elevados, de hasta 2 mm. Como la superficie específica del polvo es reducida y el periodo de interacción es limitado, no hay tiempo suficiente para que la maduración se desarrolle en toda la masa de las partículas más gruesas del caucho. Por tanto, el polvo de caucho funciona como un sistema de dos componentes en el que las partículas más finas (principalmente las que pasan por el tamiz 0,5 mm) interaccionan con el betún a elevada temperatura y modifican su reología mediante un proceso similar al de vía húmeda. Por otro lado, las partículas gruesas se comportan como un árido elastomérico dentro del esqueleto mineral de la mezcla bituminosa, aunque superficialmente también reacciona con el betún y se crea una interfase betún/caucho que cohesionan ambos materiales. En España esta técnica se ha utilizado con dotaciones del 2% de polvo de caucho en peso de mezcla.

La segunda técnica utiliza polvo de caucho de menor tamaño (todo pasa por el tamiz 0,5 mm) y en menor proporción. El polvo de caucho más fino actúa como un modificador del betún añadido al mezclador. Se trata de un sistema que se puede considerar como intermedio entre la vía seca descrita en primer lugar y la vía húmeda y es menos crítico que la primera técnica reseñada.

1.7. EVOLUCIÓN HISTÓRICA

Vía húmeda

La incorporación del polvo de caucho procedente del triturado de neumáticos de desecho en betunes, se desarrolló comercialmente en EEUU en los años 60 con la patente de Charles McDonald para su aplicación en tratamientos superficiales y bacheos. El empleo de ligantes con caucho en mezclas bituminosas comenzó a generalizarse en 1985, en Arizona y California.

En Europa empezaron las pruebas con betún modificado de alta viscosidad con caucho en mezclas drenantes en los años 70, especialmente en Bélgica y Francia, pero la falta de plantas de trituración y el desarrollo de los ligantes modificados con polímeros (SBS, EVA, etc.) limitaron su empleo.

En España el primer betún con polvo de caucho de NFU a escala industrial se desarrolló en el año 1996 y fue realizado en central. Este betún se utilizó en tramos de ensayo en Sevilla y Madrid.

Posteriormente, la publicación del Plan de Neumáticos Fuera de Uso 2001-2006 impulsó nuevamente el empleo de polvo de caucho en la fabricación de mezclas bituminosas. En el año 2002 se empezaron a utilizar dos equipos de fabricación “in situ” de betún con polvo de caucho, uno de los cuales fabricaba betunes del tipo BMAVC. Con ellos se construyeron tramos en Cádiz, Madrid y Castellón. También se desarrolló un betún modificado con caucho estable que se utilizó en el tramo de Madrid. Ese mismo año se publicó la Orden Circular 5bis/02, en la que se prescribía la prioridad de empleo de los materiales procedentes del reciclaje de neumáticos en las mezclas bituminosas, siempre que su uso fuese técnica y económicamente viable. A partir del año 2004 se han construido numerosos tramos con mezclas bituminosas fabricadas con betunes modificados/mejorados con caucho. En el Anejo 6 se presenta una lista de los tramos construidos hasta finales del año 2005.

Vía seca

La idea original de la vía seca fue desarrollada por dos compañías suecas (Skega AB y AB Vaegfoerbaetringar) a finales de los años 60 y el producto se comercializó bajo el nombre de Rubit. En 1978 se patentó en EEUU con el nombre de PlusRide. En este sistema se utiliza un caucho troceado con tamaños relativamente gruesos, en la fracción 0/6, y una granulometría discontinua. Originalmente se diseñó como un sistema antihielo, ya que las partículas más gruesas se comportan como áridos elásticos y se deforman en la superficie del firme por las solicitudes producidas por los vehículos, provocando la rotura del hielo cuando se comienza a formar.
En 1986 Takallou desarrolló un sistema alternativo al PlusRide (TAK genérico), empleando un tamaño más pequeño de las partículas (inferior a 1 mm) y una dotación aproximada del 2%. Este procedimiento no está protegido por patente.

Hay otro sistema genérico, que se utilizó por primera vez en Florida, y que utiliza menores cantidades de caucho y de menor tamaño (pasa por el tamiz 0,1 mm) que los empleados con el sistema TAK genérico.

En España, fue en Cataluña, a principios de la década de los 90, donde se inició la utilización de polvo de caucho por vía seca, a instancias de la Junta de Residuos de la Generalitat. Las primeras experiencias se basaron en la tecnología genérica de Takallou, adaptadas a la práctica española. Se construyeron varios tramos experimentales, con mezclas densas y semidensas modificadas con un 2% de polvo de caucho de tamaño inferior a 2 mm, que se emplearon como capas de rodadura. Hay ejemplos en una avenida de Constantí, en caminos vecinales de Vacarisses, pero los más característicos son los que figuran en el Anexo 6.

En el año 1996 se realizaron varios tramos de ensayo por vía seca en Sevilla y en Madrid con comportamiento dispar, en los que también se extendieron mezclas fabricadas por vía húmeda. En el tramo de Sevilla se fabricó una mezcla discontinua tipo F10 y en el de Madrid una mezcla densa D20 y otra F10. El principal problema de estas aplicaciones fue la falta de tiempo suficiente para que se produjese la interacción del betún con el polvo de caucho.

En 2004 se realizó un tramo experimental en Salamanca, con una mezcla de tipo semidenso modificada con un 1% de polvo de caucho de tamaño máximo 0,5 mm, con muy buenos resultados.

Quizá la experiencia de mayor interés, por el número de kilómetros ejecutados, es la de una empresa de Alicante, que desde el año 1997 ha puesto en obra unos 100 km de calzada, principalmente en vías urbanas en las provincias de Murcia, Alicante y Albacete, empleando mezclas bituminosas discontinuas del tipo M-10. Esta empresa utiliza polvo de caucho de tamaño inferior a 0,3 mm, con una dosificación aproximada del 0,5% sobre mezcla.

1.8. CONSIDERACIONES TÉCNICAS

Las modificaciones que el polvo de caucho procedente de NFU produce cuando se incorpora a un betún asfáltico depende del tipo y naturaleza del betún, de la granulometría y del proceso de obtención del polvo de neumático, de la composición química del aditivo o aditivos (si los lleva), de las proporciones relativas de estos componentes, del sistema de fabricación y de las condiciones operatorias (temperatura, tiempo, etc), entre otros.

Para los BMAVC, que son los empleados habitualmente en el estado de California en la fabricación de mezclas abiertas y discontinuas, la guía de utilización CALTRANS (Ref. 3) recoge las ventajas, beneficios y efectos que esta técnica tiene tanto en el betún como en las mezclas, que son los siguientes:

- La adición de polvo de caucho a un betún o una mezcla bituminosa tiene dos efectos principales:
 - El polvo de caucho actúa como espesante, aumentando la viscosidad del ligante. En las mezclas bituminosas esto permite envolver los áridos con películas más gruesas de betún sin que se produzcan escurrimientos o exudaciones.
 - La adición de polvo de caucho modifica la reología de los betunes, de manera que aumentan su elasticidad y resiliencia a temperaturas elevadas y disminuye la susceptibilidad térmica. La modificación reológica es menor que la de los elastómeros nuevos.

- El efecto conjunto de estas modificaciones permite conseguir en las mezclas bituminosas:
 - Mejor resistencia a las roderas que las mezclas que utilizan betún convencional, por su elevada viscosidad, punto de reblanquecimiento y resiliencia (ligante más elástico y viscoso a las temperaturas altas de servicio).
 - Menor susceptibilidad a la temperatura que las mezclas bituminosas fabricadas con betún convencional.
 - Mayor resistencia al agrietamiento, tanto por fatiga como por reflexión de las capas inferiores, que las mezclas fabricadas con betún convencional, debido a los elevados contenidos de ligante que permite esta técnica.
Mayor resistencia al envejecimiento y a la oxidación que las mezclas convencionales, por el potencial de utilizar mayores dotaciones de ligante y por la presencia de los antioxidantes del caucho de neumáticos.

Mediante el empleo de las mezclas bituminosas fabricadas con BC y BMC se consigue mejorar las características de las mezclas, con la consiguiente reducción de costes de mantenimiento y de interrupción del tráfico por reparaciones en el firme. Los BC presentan características mejores que las de los betunes asfálticos convencionales, pero inferiores a las de los BMC. Estos últimos tienen características empíricas similares a las de los betunes modificados con polímeros, aunque tal similitud no presupone necesariamente que las prestaciones de ambos ligantes deban ser idénticas, puesto que su estructura y micromorfología es distinta.

Otra ventaja que se deriva del empleo de los ligantes modificados/mejorados, desde la óptica de la seguridad vial, es que mantienen durante más tiempo el contraste con las marcas viales debido a que permiten introducir más betún y dura más el color negro de la superficie.

Si bien con los ligantes modificados convencionales se consiguen ventajas similares que con los ligantes modificados/mejorados con caucho, conviene tener en cuenta las siguientes peculiaridades:

- Con los precios actuales, los betunes con caucho permiten aumentar la viscosidad de una manera más económica que los polímeros nuevos, de manera que se hace posible la aplicación de betunes muy viscosos, con los que no se contaba hasta ahora por cuestión de precio.

- Si se emplean en el rango de viscosidades medias, usuales de los ligantes modificados convencionales, los betunes con caucho no alcanzan el grado de modificación reológica de estos ligantes, pero es suficiente para algunas aplicaciones y se reduce el coste, de manera que permiten un uso más amplio de tales betunes.

En la modificación de las mezclas bituminosas con polvo de caucho por vía seca se pueden conseguir ventajas semejantes, aunque en menor grado, que las indicadas para los betunes modificados/mejorados con caucho. No obstante, las mezclas fabricadas por vía seca necesitan procedimientos específicos de fabricación y condiciones controladas de ejecución, por lo que precisan empresas adiestradas y de un control de calidad riguroso. Su interés radica en las siguientes ventajas adicionales:

- Se obtienen mezclas bituminosas más baratas que con los betunes modificados.

- La tecnología se hace accesible a las empresas fabricantes de mezclas bituminosas y no sólo a las que fabrican betunes modificados.

- Se puede trabajar directamente con el polvo de caucho de una determinada zona o región, sin traslados adicionales (esta ventaja también la comparten los BMAVC fabricados “in situ”).

1.9. COSTES

En el estudio de costes debidos a la utilización de BMAVC o polvo de caucho añadido al mezclador, hay que tener en cuenta los siguientes factores:

- el coste del polvo de caucho, que es actualmente del mismo orden que el betún,
- el coste debido al incremento (0,25% aproximadamente) en la dotación de betún,
- el coste debido al incremento de energía por la elevación de la temperatura de fabricación de la mezcla bituminosa (unos 10ºC al menos),
- el coste debido a los equipos adicionales necesarios para fabricar el betún modificado/mejorado o BAVMC “in situ”, o el silo o tolva dosificadora de polvo y el silo de mezcla en caliente en el caso de la vía seca,
- el coste debido a la disminución del rendimiento, en su caso.

Por otro lado, estos costes hay que compararlos con los beneficios debidos a una prolongación de la vida de servicio por el aumento de la dotación de betún y otras mejoras, y de una reducción del nivel sonoro.

1.10. CONSIDERACIONES AMBIENTALES

Las principales ventajas ambientales que se derivan del empleo de polvo de neumático en los materiales bituminosos son las siguientes:

- Se cumple el principio ambiental de jerarquía, reutilizando y reciclando los residuos, y se reduce el volumen de neumáticos fuera de uso destinados a recuperación energética o depositados en vertederos. El empleo de residuos permite a su vez ahorros en recursos...
naturales. En la técnica de las mezclas fabricadas con BMAVC, se estima un aprovechamiento de 350 neumáticos de turismo por kilómetro de carril y por cada centímetro de espesor de mezcla bituminosa. Esta cifra es del orden de 75 a 150 en las otras técnicas.

- Su empleo en mezclas bituminosas permite reducir el nivel sonoro de rodadura. En distintos países europeos, así como en EEUU y Canadá, se ha medido un menor nivel sonoro con el empleo de mezclas con betún caucho. Las reducciones observadas son del orden de 3 a 4 dB(A) respecto a las mezclas bituminosas convencionales, aunque todavía queda la duda de cuánto tiempo persiste esta reducción. Las primeras medidas de sonoridad de la rodadura sobre superficies que contienen BMAVC realizadas en España están en línea con estas experiencias. Así, el CEDEX realizó medidas del ruido de rodadura en diversos tramos de una autopista mediante el método de proximidad (CPX). Los resultados obtenidos indican que la mezcla bituminosa fabricada con un ligante tipo BMAVC presenta reducciones del nivel de presión sonoro $L_p (A)$ de entre 2 dB (para $v = 50 \text{ km/h}$) y 4 dB (para $v = 110 \text{ km/h}$) respecto a una mezcla semidensa y un micro, si bien estas mezclas tienen tiempos de servicio diferentes y estados de conservación igualmente diferentes.

Por otro lado, en el empleo de neumáticos fuera de uso en materiales bituminosos hay una serie de aspectos que hay que considerar:

- Las altas temperaturas empleadas en algunos procesos de vía húmeda podrían aumentar las emisiones (humos y partículas) durante la fabricación y extensión de los materiales bituminosos. Sin embargo, en los estudios realizados en New Jersey, Michigan, Texas y California (Ref. 3) se obtuvo como resultado que las emisiones medidas durante la fabricación del betún caucho eran aproximadamente las mismas que en la fabricación de mezclas convencionales y que las emisiones de componentes peligrosos y de partículas se encontraban dentro de los límites autorizados. Las emisiones, por otro lado, parecen estar más relacionadas con la temperatura de la central, el combustible empleado en la misma y el betún de base que con el empleo de caucho. Además, el polvo de caucho no contiene productos químicos extraños que presenten riesgos para la salud. Está formado por distintos tipos de caucho y otros hidrocarburos, negro de carbono, aceites plastificantes y cargas inertes. La mayor parte de los compuestos químicos que contienen se encuentran también presentes en los ligantes bituminosos, aunque en proporciones diferentes.

- Por otro lado, el empleo de caucho no parece presentar riesgos para la salud de los operarios de la central de fabricación o de las extendadoras o compactadores. Entre 1989 y 1991 se llevó a cabo un estudio en California para valorar los efectos de la exposición a las emisiones cuando se utilizaba caucho (Ref. 16), en el que se midieron emisiones y se hizo un seguimiento de la salud de los trabajadores. Se comprobó con claridad que los riesgos asociados al empleo de caucho eran despreciables y que las emisiones no eran diferentes a las que se producían cuando se utilizaba betún convencional. También en EEUU, el Instituto Nacional para la Seguridad y Salud Ocupacionales (NIOSH) en colaboración con la Administración Federal de carreteras, realizaron diversos estudios llegándose a las mismas conclusiones que los estudios de California (Ref. 8).

En España se ha realizado una evaluación de exposición de agentes químicos en trabajadores dedicados a la preparación de betún modificado de alta viscosidad con caucho. Los resultados obtenidos ponen de manifiesto que, tanto la concentración de polvo de caucho como de vapores orgánicos es lo suficientemente pequeña como para que no represente un “riesgo para su salud” (Ref. 40).

Las mezclas bituminosas fabricadas con polvo de caucho pueden reciclarse en el futuro, cuando se agote su capacidad de servicio. En España no hay experiencia en este campo, pero sí la hay en EEUU, desde 1987, con numerosos tramos reciclados, tanto con mezclas fabricadas por vía húmeda como por vía seca (Ref. 1). Los resultados de estos estudios indican que las mezclas con caucho pueden reciclarse en caliente mediante los procedimientos usuales. También se indica que, tanto los niveles de emisiones durante el reciclado como el comportamiento de las mezclas recicladas, fueron similares a las de las mezclas recicladas que no incorporaban caucho.
2. TÉCNICAS DE EMPLEO DE POLVO DE CAUCHO EN MATERIALES BITUMINOSOS

2.1. INTRODUCCIÓN

En el capítulo anterior se han señalado las mejoras técnicas y medioambientales que se pueden obtener con la aportación de polvo de caucho a las mezclas bituminosas en caliente. El grado en que se alcancen dichas mejoras depende de la técnica de incorporación que se utilice para el polvo de caucho, del tipo de mezcla bituminosa fabricada, y de su situación en el firme.

En este capítulo se presenta el campo de aplicación recomendado de los distintos tipos de mezcla asfáltica utilizados en capa de rodadura, en el caso en que se haya adicionado polvo de caucho, en función de la técnica de incorporación del mismo.

2.2. CAPAS DEL FIRME EN LAS QUE SE UTILIZA ACTUALMENTE EL POLVO DE CAUCHO

Las mezclas bituminosas se emplean en capas de rodadura, intermedia o de base, y se colocan sobre otras mezclas bituminosas, materiales granulares o sobre materiales tratados con cemento. En los firmes flexibles o semirrígidos las distintas capas tienen las siguientes funciones:

- La capa de rodadura debe proporcionar una superficie cómoda y segura para la circulación de los vehículos. Tiene que cumplir también una función de impermeabilización, ya que la entrada de agua perjudica el comportamiento de las calzadas, aunque en los firmes modernos esta función se le suele asignar a la capa intermedia. No es fundamental que esta capa tenga una función estructural importante, aunque puede tenerla.
- La capa intermedia tiene como objetivo fundamental conseguir una regularidad superficial adecuada. También se le asigna una función estructural importante y a veces, con capas drenantes o permeables, debe asegurar la impermeabilidad de las capas inferiores y de la explanada.
- La capa de base es la que desarrolla el principal papel estructural. Sus funciones son absorber la mayor parte de las tensiones, de manera que las que lleguen a la explanada sean aceptables para ella, y resistir la repetición de flexiones o esfuerzos sin agrietarse por fatiga (en el caso de bases tratadas).
- La capa de subbase actúa como regularización del soporte y en algunos casos a manera de capa anticontaminante y para evitar la posible ascensión capilar del agua procedente del apoyo.
- En la reparación de firmes agrietados o, menos frecuentemente, en la nueva construcción de firmes semirrígidos pueden utilizarse capas o sistemas antifisuras, que tienen como objetivo frenar o retrasar la aparición en superficie de grietas procedentes de las capas inferiores. Esta técnica de capas antifisuras se utiliza bajo capas de rodadura o inferiores.

La experiencia en España con las mezclas bituminosas en caliente con polvo de neumático, tanto en vía seca como en vía húmeda, se refiere básicamente a capas de rodadura y, en menor medida, intermedia. Es por ello que este Manual se concentra en el empleo de mezclas que incorporen polvo de caucho en las capas de rodadura, aunque incluye alguna referencia a las posibilidades de utilización en capas intermedia e incluso en capas inferiores no estructurales (capas anti-fisuras).

2.3. MEZCLAS BITUMINOSAS EN CAPA DE RODADURA

Las mezclas bituminosas se pueden clasificar según la temperatura a la que se extienden y compactan en:

- mezclas en caliente, con temperaturas de puesta en obra y compactación superiores a 100 °C, y
- mezclas en frío, que se extienden y compactan a temperatura ambiente o ligeramente superiores a ésta.

Las técnicas de incorporación del polvo de caucho que se han puesto a punto hasta ahora se han dirigido a las mezclas bituminosas en caliente,
aunque es posible fabricar emulsiones bituminosas con polvo de caucho y por tanto no hay limitación para su empleo en las mezclas en frío.

Las mezclas bituminosas en caliente que se utilizan habitualmente en España son las siguientes:

- **Mezclas drenantes**

Son mezclas bituminosas para capa de rodadura con un contenido muy bajo de mortero, un gran contenido de huecos (superior al 20%) y un contenido elevado de ligante en comparación con las mezclas abiertas convencionales (4,5%). Están especificadas en el artículo 542 del PG-3.

Estas mezclas son muy adecuadas para mejorar la seguridad en momentos de lluvia, al absorber el agua superficial y drenarla hacia los arcenes. También contribuyen a la seguridad cuando la superficie está seca, por su gran macrotextura. Además, reducen el ruido de rodadura de los vehículos. No obstante, las propiedades drenantes y de baja sonoridad se reducen según se va produciendo la colmatación del material, lo que generalmente ocurre en un plazo comprendido entre 3 y 6 años.

Por otro lado, las mezclas drenantes son más sensibles que otras mezclas a los desprendimientos de partículas en superficie, y no es conveniente utilizarlas en zonas donde se producen frecuentes paradas o giros de los vehículos, como en semáforos, glorietas, calles o tramos con fuertes curvas. Tampoco son recomendables en zonas susceptibles a las heladas, porque exigen una mayor frecuencia de intervención. Además, su capacidad estructural es menor que la de las mezclas convencionales.

Las mezclas drenantes se utilizan en capas de rodadura de 4 cm. Pueden aplicarse tanto en firmes de nueva construcción como en rehabilitaciones superficiales para corregir zonas deslizantes, superficies envejecidas, para reducir el ruido, o como capa de rodadura en rehabilitaciones estructurales. Son muy útiles en aplicaciones urbanas en zonas en las que no se quiera elevar excesivamente la cota de la superficie o para reducir el ruido de rodadura, como alternativa a las mezclas drenantes. Necesitan un riego de adherencia espeso, especialmente en las capas más delgadas o en las más abiertas.

- **Mezclas semidensas y densas**

Las mezclas de tipo hormigón asfáltico, semidensas y densas, se encuentran normalizadas en el artículo 542 del PG-3 y tienen una granulometría continua y un contenido moderado de ligante (entre el 4,5 y el 5%). Se utilizan con tráficos pesados como capas intermedias, bajo una rodadura drenante o discontinua, y como capas de rodadura o intermedias para el resto de los tráficos. También se pueden utilizar como base, aunque en esta capa está más generalizado el empleo de mezclas gruesas.

Como capa de rodadura las mezclas densas y semidensas tienen la ventaja de poseer mayor capacidad estructural que el resto de las mezclas bituminosas, pero su textura no las hace muy adecuadas para tramos en los que se circula a velocidad elevada. Se utilizan en firmes de nueva construcción y en rehabilitaciones. Se colocan en capas de 5 ó 6 cm, en función del tráfico de la vía.
2.4. APLICACIONES DE LAS TÉCNICAS POR VÍA HÚMEDA

En el apartado 1.6 se han señalado las principales consecuencias técnicas de la adición de polvo de caucho a los ligantes bituminosos. Se ha visto que con el polvo de neumático se aumenta la viscosidad del ligante en todo el rango de temperaturas y se modifica su reología, lo que permite incrementar la dotación de betún sin perjuicio de la resistencia a las deformaciones plásticas. En las mezclas bituminosas el aumento de la dotación de ligante significa retrasar el envejecimiento y, por tanto, prolongar la vida de servicio. Además, en las mezclas drenantes y discontinuas el incremento de ligante y la mayor viscosidad confiere a las mezclas una mayor resistencia a la pérdida de partículas.

En consecuencia, la incorporación de polvo de caucho permite conseguir mezclas mejoradas para capas de rodadura e intermedias, tanto convencionales como drenantes o discontinuas, en las que la resistencia a las deformaciones plásticas y el elevado contenido de betún son factores esenciales para conseguir mezclas bituminosas duraderas.

Las ventajas que pueden aportar los ligantes que incorporan polvo de caucho frente a los ligantes modificados con polímeros son la mejora en la resistencia al envejecimiento, el empleo de mayores dotaciones de ligante, y una posible reducción del ruido.

Se ha descrito también en el apartado 1.6 que mediante la vía húmeda se pueden obtener tres tipos de ligante: los denominados BC, en los que el contenido de caucho es reducido (entre el 8 y el 12% en peso del ligante conjunto), los BMC (generalmente con contenidos de polvo de caucho entre 12% y 15%) y los BMAVC (con un contenido de polvo de caucho igual o superior al 15%).

Betún modificado/mejorado con caucho

En la tabla 2.1 figura el campo de empleo recomendados por este Manual para los BMC y BC en capa de rodadura, sobre la base de la experiencia acumulada en nuestro país hasta la fecha.

<table>
<thead>
<tr>
<th>Mezcla bituminosa en capa de rodadura</th>
<th>Tráfico</th>
<th>Tipo de betún recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T00 y T0</td>
<td>BMC (entiéndiendo como tal aquel que cumple las especificaciones establecidas en el artículo 215 del PG-3, en todas las opciones expresadas en las tablas 542.1 y 543.1 del PG-3)</td>
</tr>
<tr>
<td>Drenante</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discontinua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densa o semidensa</td>
<td>T1 y T2</td>
<td>BMC (entiéndiendo como tal aquel que cumple las especificaciones establecidas en el artículo 215 del PG-3, en todas las opciones expresadas en las tablas 542.1 y 543.1 del PG-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BC (entiéndiendo como tal aquel que no cumple las especificaciones establecidas en el artículo 215 del PG-3 pero sí cumple las especificaciones definidas en el Anejo 4 de este Manual), en las mismas condiciones que los betunes de penetración indicados en las tablas 542.1 y 543.1 del PG-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3 y T4</td>
<td>BC (entiéndiendo como tal aquel que no cumple las especificaciones establecidas en el artículo 215 del PG-3 pero sí cumple las especificaciones definidas en el Anejo 4 de este Manual), en las mismas condiciones que los betunes de penetración indicados en las tablas 542.1 y 543.1 del PG-3</td>
</tr>
</tbody>
</table>

La experiencia existente ha puesto de manifiesto que los contenidos óptimos de betún con los betunes modificados/mejorados con caucho son generalmente superiores (del orden del 0,25-0,35%) a los obtenidos para mezclas equivalentes fabricadas con betunes convencionales, ya que el contenido de caucho debe descontarse del ligante. A pesar de ello, la elevada viscosidad de estos ligantes con caucho no perjudicaría la resistencia a las deformaciones plásticas, ni se producirían escurrimientos en mezclas drenantes; y por otro lado se mejoraría la resistencia a la fatiga. En todo caso, siempre debe establecerse el contenido óptimo del ligante mediante los correspondientes ensayos.
Antes de extender la recomendación de empleo de betunes con caucho que cumplen las especificaciones definidas en el Anejo 4 a capas de rodadura con tráfico muy intenso (T0 y, sobre todo, T00), se recomienda construir tramos experimentales adicionales que permitan ampliar la experiencia sobre la bondad de su empleo.

En cualquier caso, se recomienda también hacer un seguimiento del comportamiento en el tiempo de las secciones ejecutadas con tráfico igualmente elevado (especialmente igual o superior a T1), con el objeto de facilitar la revisión de las recomendaciones y propuesta de especificaciones incluidas en este Manual.

Ligantes modificados de alta viscosidad con caucho

Los BMAVC se caracterizan por tener una gran viscosidad, lo que les permite emplearse en las mezclas bituminosas en dotaciones muy elevadas, sin que se produzcan escarrimientos.

Pueden utilizarse, con dotaciones superiores a las habituales en la fabricación de mezclas drenantes (5 a 6% de betún) o discontinuas convencionales (6 a 7% de betún), en aquellos casos en que sea necesario mejorar la resistencia al desprendimiento de las partículas o reducir el ruido de rodadura. Las mezclas densas o semidensas no tienen suficientes huecos en áridos para acomodar elevadas cantidades de ligante, por lo que esta técnica no presenta ventajas en relación con los ligantes modificados convencionales.

Las mezclas bituminosas con elevado contenido de betún (> 7%) que se han fabricado hasta el momento en España, son de granulometría discontinua, con BMAVC en elevadas dotaciones (en torno al 8%) y contenido de huecos entre el 4 y el 6%. Son mezclas, que por su elevado contenido de ligante, presentan una elevada resistencia a la reflexión de grietas de las capas superiores.

En EEUU hay abundantes ejemplos de buenos resultados en la rehabilitación de pavimentos agrietados de tipo bituminoso o de hormigón, y en España se han llevado a cabo varias pruebas de refuerzo sobre hormigón con resultados prometedores hasta el momento (Ref. 38). También se ha hecho una prueba como pavimento sobre materiales reciclados con cemento (tramo Revilla de Camargo – Puente Arce).

Cuando estas mezclas se utilizan en rodadura proporcionan una superficie duradera, con una resistencia mayor que las mezclas convencionales a la reflexión de grietas, a las rodaderas y al envejecimiento. Tienen también unas buenas características de resistencia al deslizamiento, por la textura de la mezcla discontinua y tienen el potencial de reducir considerablemente el ruido de rodadura. A título de ejemplo, los valores medios del CRT de una mezcla de estas características, en una autopista, medidos después de uno y de tres años de la extensión de la mezcla han sido de 65 y 61. También se midió la macrotextura por la técnica volumétrica obteniéndose valores de 1,04 y 1,32, respectivamente.

El espesor mínimo de la capa es de 4 cm, y se pueden colocar hasta 6 cm en rodadura y 8 cm en capas inferiores. Si el refuerzo o la rehabilitación necesitase, según los datos del estudio de deflexiones, de mayores espesores pueden extenderse encima de otra capa con mezclas bituminosas convencionales o fabricadas también con BMAVC. Si se aplicasen sobre algún geotextil, debe comprobarse que las elevadas temperaturas de extendido no puedan dañarlo.

Los criterios de rehabilitación de firmes vienen dados en la Norma 6. 3 IC de la Dirección General de Carreteras. En esta norma se contemplan tres aspectos:

- La necesidad de aumento de la capacidad de soporte (deflexiones elevadas).
- El retraso de grietas reflejadas (firmes agrietados o con materiales tratados con cemento).
- La necesidad de mejorar la regularidad superficial.

En las aplicaciones en las que el objetivo fundamental sea reducir las deflexiones se recomienda aplicar un factor de equivalencia de 1 respecto a los espesores dados por la Norma 6.3 IC. En nueva construcción se recomienda también que se utilicen equivalencias de 1, de manera que se mantengan las condiciones de trabajo para las capas inferiores del firme previstas en la 6.1 IC.

La norma 6.3 IC no define espesores de capa para actuaciones en las que el principal objetivo sea reducir o evitar la reflexión de grietas, como en la rehabilitación de pavimentos de hormigón o firmes semirrígidos con deflexiones relativamente bajas pero en los que se quiera impermeabilizar la superficie. En estos casos es usual basarse en experiencias anteriores. Las mezclas bituminosas fabricadas con elevados contenidos de estos BMAVC permiten retrasar la aparición de fisuras, si bien no hay suficiente experiencia para establecer una equivalencia con las mezclas convencionales.
En consecuencia, los BMAVC pueden utilizarse como alternativa a los ligantes modificados con polímeros en capas drenantes o discontinuas convencionales para aumentar las dotaciones de betún, de manera que se mejoren algunas características mecánicas y de envejecimiento. También pueden emplearse para la rehabilitación o conservación de firmes agrietados, tanto de pavimento bituminoso como de hormigón. Igualmente podrían utilizarse en firmes de nueva construcción en los que se quiera evitar la reflexión de grietas (firmes semirrígidos o reciclado de firmes con cemento). Se pueden aplicar para todo tipo de tráfico aunque, al igual que los BMC, su empleo en tramos con tráficos muy elevados debiera ser con marcado carácter experimental.

Por las características de estas mezclas - buena resistencia a la deformación plástica y a la propagación de fisuras, así como buenas propiedades acústicas - podrían ser adecuadas para pavimentación de vías urbanas, en las que hay generalmente una base de hormigón con grietas de retracción y en las que la reducción del ruido es de gran importancia. Ejemplos de esta aplicación se han realizado en viales de Valladolid y Salamanca.

2.5. MEZCLAS BITUMINOSAS MODIFICADAS CON POLVO DE CAUCHO

El procedimiento de fabricación por vía seca permite mejorar las características de las mezclas bituminosas de una forma relativamente económica y por consiguiente tiene un interesante potencial para consumir polvo de caucho procedente de NFU.

Hasta ahora, en las actuaciones por vía seca se han empleado en España tres dosificaciones básicas.

En Cataluña, se han utilizado mezclas semidensas o densas, fabricadas con un 2% en peso de caucho de tamaño máximo de 2 mm y contenidos elevados de betún (entre 5,7 y 6,2%). El árido natural se adapta en la zona del árido fino a la parte inferior del huso, de manera que la combinación de caucho y áridos se encuentra en el centro del huso D12 o S12. Esta dosificación necesita tiempos elevados de espera entre la fabricación y la extensión y una compactación prolongada hasta que el material esté relativamente frío. Debe utilizarse, pues, en condiciones muy controladas y con empresas bien formadas en la técnica de la vía seca.

En Alicante y Murcia las mezclas con polvo de caucho se han empleado sobretodo en mezclas discontinuas tipo M, pero también hay alguna aplicación en mezclas drenantes y discontinuas tipo F. Se utiliza un 0,5% de polvo de caucho de tamaño inferior a 0,5 mm y entre un 5,2 y 5,7% de betún. Es una dosificación que reduce considerablemente los tiempos de espera y no obliga a prolongar excesivamente la compactación. Esta aplicación es la que cuenta con mayor número de kilómetros pavimentados (más de 100 km de calzada, que en su mayoría se han realizado en vías urbanas).

En las pruebas de Castilla y León se ha empleado un 1% de polvo de caucho de tamaño inferior a 0,5 mm en una mezcla de tipo S-12 y un 5,3% de betún. Se trata de una dosificación intermedia entre las dos anteriores.

A la vista de las experiencias anteriores, se propone, para vías interurbanas, los campos de aplicación de las técnicas por vía seca indicados en la tabla 2.2.

Aunque las obras realizadas por este método en carreteras con tráficos elevados están mostrando un buen comportamiento, se recomienda – para delimitar adecuadamente el campo de aplicación de la vía seca con tráficos superiores a los señalados en la tabla – continuar realizando tramos experimentales y seguir su comportamiento, especialmente en el caso de vías de altas prestaciones. Asimismo, como en el caso de los betunes modificados/mejorados, se aconseja hacer un seguimiento del comportamiento en el tiempo de las secciones ejecutadas con tráfico medio (T2), con el objeto de facilitar la actualización de las recomendaciones y propuesta de especificaciones de este Manual.

| Tabla 2.2 |
| Campo de aplicación recomendado de las técnicas por vía seca |

<table>
<thead>
<tr>
<th>Mezcla bituminosa en capa de rodadura</th>
<th>Tráfico en vías interurbanas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenante</td>
<td>T2 a T4</td>
</tr>
<tr>
<td>Discontinua</td>
<td></td>
</tr>
<tr>
<td>Densa o semidensa</td>
<td></td>
</tr>
</tbody>
</table>

TÉCNICAS DE EMPLEO DE POLVO DE CAUCHO EN MATERIALES BITUMINOSOS

- 13 -
3. MATERIALES Y DOSIFICACIÓN DE LIGANTES Y MEZCLAS BITUMINOSAS CON POLVO DE CAUCHO

Este capítulo establece las características recomendables para los materiales y los procedimientos de dosificación de:

- los betunes modificados/mejorados con polvo de caucho y los betunes modificados de alta viscosidad con caucho,
- las mezclas fabricadas con dichos betunes, y
- las mezclas modificadas por vía seca, añadiendo el polvo de caucho al mezclador.

Las características aquí descritas se complementan con las propuestas de especificaciones incluidas en los Anejos 2 a 5 de este Manual.

3.1. MATERIALES

Polvo de caucho

Para que las mezclas bituminosas en caliente fabricadas con polvo de caucho tengan unas características adecuadas, se le deben exigir al polvo de caucho unas ciertas propiedades químicas y físicas. En el Anejo 2 se presentan las especificaciones para este material.

Las especificaciones sobre composición química tienen como función principal asegurar que el material que se utiliza proviene del reciclado de neumáticos fuera de uso. Se pueden utilizar también para comprobar la homogeneidad de su composición a lo largo de la obra. Se debe exigir que los contenidos de caucho natural, negro de carbono y extracto cetónico estén dentro de unos intervalos de valores y que el azufre y las cenizas no sobrepasen unos límites determinados.

Las propiedades físicas que se especifican son las siguientes:

- El tamaño máximo y la granulometría de las partículas de polvo de caucho, que son los parámetros que tienen gran influencia en el comportamiento del material.
- La densidad relativa, que permite identificar el caucho de neumáticos frente a otros tipos.
- La humedad, porque puede producir espumas durante la fabricación.

- El contenido en contaminantes - como metales, arenas y textiles - que se limita para evitar deterioros en los equipos de manejo y pérdidas de características en los productos fabricados.

Betún asfáltico

El betún asfáltico al que se incorpora el polvo de caucho debe cumplir los requisitos del artículo 211 “Betunes asfálticos” del PG3. En las técnicas por vía húmeda debe ser de mayor penetración (aproximadamente un grado) que el que se quiere conseguir tras la adición del polvo.

Para la selección del betún asfáltico deben tenerse en cuenta los comentarios del apartado siguiente.

Aditivos

Pueden utilizarse aditivos para potenciar la interacción entre el betún y el caucho o para otras funciones, como mejora de la estabilidad, adhesividad, reducción de temperatura, etc.

3.2. DOSIFICACIÓN DE BETUNES CON POLVO DE CAUCHO

Factores a considerar en la dosificación

La dosificación del betún con polvo de caucho consiste en combinar sus componentes para obtener la proporción óptima que permita alcanzar las propiedades que se deseen. El objetivo puede ser obtener características similares a las de un determinado tipo de betún modificado de los definidos en el PG-3, pero también se puede necesitar una viscosidad superior a la de los betunes modificados con polímeros, en cuyo caso serían de aplicación las características de los betunes de alta viscosidad modificados con caucho que figuran en el Anejo 3.

La mezcla arbitraria de componentes dentro de los intervalos usuales no lleva necesariamente a obtener un betún de características adecuadas. Por ello es necesario recurrir a técnicas específicas de dosificación y caracterización del BMACV o del betún modificado/mejorado.
Dependiendo de la proporción relativa y de las propiedades de los componentes se puede conseguir una amplia gama de ligantes con caucho. Los más utilizados para mezclas bituminosas son los de penetraciones comprendidas entre 15 y 70 1/10 mm, y temperaturas de Anillo y Bola entre 40 y 85ºC.

En la dosificación hay que considerar el origen y penetración del betún, las características del polvo de caucho (especialmente su granulometría), la temperatura y tiempo de mezclado y, en su caso, los aditivos necesarios.

El primer paso en el proceso de dosificación es seleccionar la penetración del betún de base según la aplicación que se pretenda, teniendo en cuenta que la adición de polvo de caucho reduce la penetración. De esta manera si, por ejemplo, se quiere que la penetración final corresponda al rango 55/70 se debe partir generalmente de un B 80/100.

El origen del ligante influye también, ya que el caucho absorbe parte de componentes malténicos para hincharse. En consecuencia, los betunes con menos componentes nafténico-aromáticos tienden a modificar en menor medida sus propiedades. Si el ligante no permite alcanzar la modificación pretendida y no se puede recurrir a otro de distinto origen, se puede ayudar al proceso con la incorporación de productos nafténico-aromáticos, que proporcionan los componentes necesarios para compatibilizar la mezcla y hacer el ligante más manejable, aunque hay que limitar su dotación porque también pueden reducir la viscosidad.

Las características del polvo de caucho que más afectan a las propiedades del ligante modificado/mejorado son la granulometría y la textura superficial. Cuanto más fina sea la granulometría, el material tiene mayor superficie en contacto con el betún y en consecuencia más rápidamente interacciona (el tiempo de interacción es proporcional al cuadrado del diámetro de las partículas) y mayores aumentos de la viscosidad se consiguen. Sin embargo, el polvo de caucho de granulometría más fina es también más caro.

La textura afecta en el mismo sentido que la granulometría, es decir, que cuanto mayor sea, más facilidad de reacción habrá con el betún. Por tanto, para un mismo origen del polvo de caucho y una misma granulometría, es de esperar que se consigan mayores modificaciones con caucho procedente de trituración mecánica, ya que con la molienda crioquíntica la superficie de las partículas es más lisa, y en consecuencia las superficies específicas son menores.

El tipo de neumático del que procede el caucho, tiene una cierta influencia. Así los neumáticos de camión, que son los que más se reciclan, tienen un mayor contenido de caucho natural, que es más reactivo y produce una mayor modificación en el ligante.

La dotación del polvo de caucho tiene una relación directa con el aumento de viscosidad, así como la temperatura y el tiempo de interacción. Con el aumento de estos tres parámetros se obtiene mayor viscosidad.

Dosificación en laboratorio

El proceso de dosificación se controla generalmente mediante la viscosidad del ligante para distintas dotaciones de polvo de neumático, temperaturas y tiempos de mezclado. La viscosidad puede medirse directamente o indirectamente a partir de la medida del punto de reblandecimiento. Si se está dosificando el ligante para que cumpla las especificaciones correspondientes a los ligantes modificados con polímeros del artículo 215 del PG-3, es suficiente utilizar la medida del punto de reblandecimiento, aunque la medida de la viscosidad es más rápida y más sensible.

Hay varios procedimientos para mezclar en laboratorio el betún y el polvo de caucho. Una manera de hacerlo es utilizar un recipiente cilíndrico, sin tapa, de unos 3 a 5 l en el que se introduce 1 kg de betún asfáltico. El recipiente con la muestra se coloca en una estufa a la temperatura de mezcla y se agita con una espátula cada cierto tiempo (generalmente cada 15 min) durante el período en que se esté midiendo la evolución de la viscosidad. Este procedimiento simula el mezclado a baja velocidad de agitación, que produce un esfuerzo de cizallamiento pequeño sobre las partículas de caucho.

Otro procedimiento es emplear un equipo calorifugado con un agitador de velocidad constante a 30 rpm (ASTM D 5167). Produce un efecto similar al de los equipos de fabricación de masillas de sellado de grietas y de algunos mezcladores para fabricación “in situ” de ligantes.

Finalmente, puede emplearse un mezclador de laboratorio de velocidad variable, que puede ajustarse para que mantenga la velocidad de...
mezcla según aumenta la viscosidad del ligante. Suelen tener velocidades comprendidas entre 500 y 750 rpm. Simulan equipos de elevada velocidad de cizallamiento, como los empleados para la fabricación de ligantes modificados con polímeros.

Es conveniente que en la dosificación se evalúen las propiedades para una gama completa de temperaturas y tiempos de mezclado o, por lo menos, si se parte de una temperatura fija, se realice un análisis para diferentes tiempos de maduración y periodos de almacenamiento (para prever las consecuencias de almacenamientos prolongados, medios y cortos), de manera que se pueda optimizar la mejora. La tabla 3.1 presenta un ejemplo de los resultados obtenidos con un betún con polvo de caucho.

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Minutos de reacción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosidad (Pa.s x 10^3) a 180ºC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>1440</td>
</tr>
<tr>
<td>Anillo y Bola</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,0</td>
</tr>
<tr>
<td></td>
<td>59,5</td>
</tr>
<tr>
<td></td>
<td>59,5</td>
</tr>
<tr>
<td></td>
<td>60,0</td>
</tr>
<tr>
<td></td>
<td>58,5</td>
</tr>
</tbody>
</table>

Las propiedades del betún con caucho deberían permanecer estables al menos durante el tiempo necesario para su puesta en obra. La uniformidad de las propiedades facilita la fabricación de la mezcla, la puesta en obra y la compactación. Por estas razones, conviene que la viscosidad del betún se encuentre siempre dentro de un estrecho intervalo, como por ejemplo de 3000 a 4000 Pa.s x 10^3 a 180ºC para un BMAVC.

La dosificación de laboratorio debe ajustarse y calibrarse en la central de fabricación del ligante con polvo de caucho.

Hay que tener en cuenta que la ductilidad de los betunes con polvo de caucho suele ser más baja que la de los betunes modificados con polímeros, por la presencia de partículas de polvo de caucho en el medio continuo del betún, lo que produce alargamientos a la rotura relativamente bajos del ligante. Además, la micromorfología de ambos es diferente.

Antes de la utilización de los ligantes fabricados in situ, debe remitirse a la Administración correspondiente los resultados de los ensayos incluidos en las especificaciones (Anejos 3 y 4) y muestras de todos los componentes. Los ensayos de las especificaciones se deben complementar con una información sobre la variación de las propiedades para distintas temperaturas de mezclado y tiempos de maduración.

3.3. DOSIFICACIÓN DE MEZCLAS BITUMINOSAS

General

Los métodos de dosificación de mezclas bituminosas tienen por objeto combinar los componentes de manera que se optimicen las características de la mezcla bituminosa para la aplicación pretendida. Las características objetivo dependen del tipo de mezcla, de la posición de la capa sobre la que se apoye, del tipo de tráfico y de las condiciones climáticas.

En las especificaciones del PG-3 de las mezclas bituminosas en caliente de tipo denso y semidenso, destinadas a capas de rodadura e intermedia, y en las mezclas discontinuas tipo F, la dosificación del ligante se determina mediante el análisis de huecos y la resistencia a las deformaciones plásticas empleando el ensayo Marshall. Una vez establecido el óptimo se comprueba que cumple los criterios de resistencia a las deformaciones plásticas y a la acción del agua mediante los ensayos de pista de laboratorio e inmersión-compresión. Además se indican criterios indirectos de espesor mínimo de película de ligante estableciendo los contenidos mínimos de betún.

Para mezclas drenantes y discontinuas tipo M, empleadas para capas de rodadura, se sustituyen los ensayos mecánicos Marshall y de pista de laboratorio por el ensayo cántabro, y el ensayo de inmersión-compresión por el cántabro tras inmersión. Se trata así de caracterizar la resistencia a la desintegración, que es la forma usual de deterioro de estos materiales.

En la dosificación de mezclas bituminosas con polvo de neumático por vía húmeda o seca se pueden utilizar estos procedimientos, recogidos en los artículos 542 y 543 del PG-3, con las modificaciones que se indican a continuación.

Criterios para mezclas densas y semidensas

En la dosificación de las mezclas densas o semidensas con ligantes modificados/mejorados con caucho (proceso por vía húmeda) interesa utilizar dotaciones de ligante superiores a las habituales, del 5,2 al 5,5% en vez del 4,7 al 5,0%...
habitudinal, para aumentar la durabilidad de la mezcla bituminosa.

Con estos contenidos de betún es necesario que las granulometrías de los áridos combinados tengan contenidos de huecos suficientes para alojar el ligante y que se mantenga a la vez el contenido mínimo de huecos especificado. Las granulometrías más adecuadas suelen ser las situadas en la parte inferior del huso granulométrico correspondiente, con un fuerte esqueleto mineral de áridos gruesos. Es preferible también utilizar mezclas del tipo semidenso a las del tipo denso, ya que estas últimas presentan contenidos de betún más bajos.

Si el esqueleto mineral no tiene suficientes huecos en áridos, los contenidos señalados de betún no permitirán cumplir los criterios de huecos en mezcla, y además pueden presentar problemas de compactación, debido a que las partículas de caucho se sitúan entre los áridos gruesos, absorbieno energía y recuperando elásticamente la deformación. Este efecto puede apreciarse en laboratorio por un aspecto esponjoso de la mezcla bituminosa o una reacción excesivamente elástica ante una determinada presión, o por una curva de huecos en mezcla excesivamente plana. Este inconveniente debe corregirse mediante granulometrías de árido más abiertas o bien disminuyendo el tamaño máximo de las partículas de caucho en el ligante.

Por otro lado, debido a la elevada viscosidad del ligante, las mezclas bituminosas con polvo de caucho se densifican menos que las convencionales con el paso del tráfico. Por ello, es conveniente diseñarlas en laboratorio con huesos en mezcla en la zona más baja del intervalo normalizado, por ejemplo, con el 4% de huecos para los tipos BMAVC y con el 4,5% para los betunes modificados/mejorados.

En las mezclas densas y semidensas fabricadas con polvo de caucho (proceso por vía seca) se obtienen también habitualmente contenidos de ligante mayores que en las mezclas convencionales, hasta valores dentro del intervalo 5,2 al 5,5%.

Por otro lado, conviene considerar el polvo de caucho en la granulometría de los áridos, especialmente cuando se utilice polvo de caucho con tamaño máximo superior a 0,5 mm y en altas dotaciones (superiores a 0,5%). Cuando se hace una composición conjunta del árido natural y el polvo de caucho debe hacerse por volumen para tener en cuenta la menor densidad relativa del polvo de caucho.

En España se ha trabajado con tres formulaciones distintas: con el 2% de polvo de caucho y tamaños máximos de hasta 2 mm, con el 1% y tamaños máximos de 0,5 mm y con el 0,5% y tamaños máximos también de 0,5 mm. Las consideraciones respecto a las granulometrías y contenido de huecos en áridos realizadas para la vía húmeda tienen aún mayor importancia, y lógicamente, las últimas dosificaciones, con menor contenido de polvo de caucho y de menor tamaño, son menos críticas que la primera.

Criterios para mezclas drenantes y discontinuas

En mezclas drenantes y discontinuas convencionales, que utilicen betún modificado/mejorado con polvo de caucho, se pueden emplear contenidos de ligante iguales o superiores a los de las mezclas convencionales con menores riesgos de escurrimiento. Aunque se utilicen contenidos elevados de betún, los husos granulométricos definidos en el PG-3 tienen huecos suficientes para alojar el ligante.

En relación con las mezclas discontinuas fabricadas en España con contenidos elevados de BMAVC para aplicaciones antifisuras, se ha empleado generalmente el huso granulométrico que se indica en la tabla 3.2.

<table>
<thead>
<tr>
<th>TAMAÑO DE LOS TAMICES, mm</th>
<th>12,5</th>
<th>10</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>0,500</th>
<th>0,063*</th>
</tr>
</thead>
<tbody>
<tr>
<td>92-100</td>
<td>82-90</td>
<td>68-75</td>
<td>29-35</td>
<td>8-13</td>
<td>2-6</td>
<td>2-4</td>
<td></td>
</tr>
</tbody>
</table>

* Incluido el polvo mineral de aportación

La diferencia principal respecto a las mezclas discontinuas del artículo 543 del PG-3 es el contenido más bajo de polvo mineral, para conseguir un mortero de menor rigidez y más deformable.

Fabricación de probetas

En la fabricación de probetas, cuando se utilizan betunes modificados/mejorados, se pueden seguir los procedimientos usuales para ligantes modificados.

Si se dosifican mezclas con BMAVC, hay que elevar las temperaturas de fabricación de las probetas. Es usual el empleo de temperaturas de, al menos, 175ºC para el betún y de 160ºC para los...
áridos, aunque, en cualquier caso, las primeras deben seleccionarse de acuerdo con las curvas de viscosidad-temperatura del betún, las indicaciones del fabricante o las temperaturas que se vayan a emplear en la obra. El calentamiento de los materiales se debe hacer en estufas de aire forzado.

Otro aspecto a considerar con los tipos BMAVC, no estables al almacenamiento, es que el ligante se debe agitar continuamente durante el calentamiento y antes de la mezcla con los áridos (véase el Anejo 3).

En la fabricación de mezclas bituminosas por vía seca debe mezclarse primero el árido y el polvo de caucho, añadirse luego el betún, e incorporar finalmente el polvo mineral.

En cualquiera de los casos, vía húmeda o seca, la mezcla en laboratorio se realiza por los procedimientos usuales, manuales o mecánicos.

Es conveniente prolongar el mezclado unos 30 s después de que se haya conseguido la envuelta total de los áridos, para conseguir un buen reparto del polvo de caucho. Si no se consigue envolver totalmente el árido en un tiempo prudencial (por ejemplo 2 min en las envueltas manuales), es una indicación de defecto en el contenido de ligante, baja temperatura de mezclado o de elevado contenido de polvo de caucho. También puede deberse a un problema de cantidad excesiva de finos o contaminación del árido, en cuyo caso debe modificarse la granulometría o el árido empleado.

La elevada viscosidad de los tipos BMAVC y de algunos betunes modificados/mejorados hacen que las mezclas bituminosas que se fabrican con ellos sean más sensibles a la temperatura de compactación que otras mezclas, por lo que hay que tener un cuidado especial para que la temperatura de la mezcla sea homogénea y que no se enfríen por debajo de la temperatura de compactación.

Compactación

Las probetas deben mantenerse en los moldes un mínimo de 4 horas, hasta que la mezcla adquiera la temperatura del ambiente. Si se desmoldan prematuramente se pueden producir descompac- taciones. Las temperaturas habituales de compactación están comprendidas entre 135 y 160°C.

En el caso de la vía seca, es fundamental determinar el tiempo de maduración antes de proceder a la compactación. Para ello se fabrican probetas a varias temperaturas y con distintos tiempos, generalmente entre 30 y 90 min, seleccionando aquel que permite obtener la mayor densidad. Generalmente las densidades se estabilizan a partir de los 45 min, pero en algunos casos pueden ser necesarios períodos más prolongados. El tiempo estimado en laboratorio debe luego verificarse en obra.

Huecos

Los análisis volumétricos se realizan de la manera usual con las salvedades siguientes:

En el cálculo de huecos de las mezclas fabricadas por vía húmeda hay que considerar que la densidad relativa del betún con caucho es algo mayor de lo habitual (densidad relativa del betún convencional 1,01 - 1,03 y densidad relativa del polvo de caucho entre 1,03 y 1,15).

En mezclas fabricadas por vía seca, antes de realizar el cálculo de huecos, debe determinarse el peso específico de los áridos combinados con el polvo de neumático, cuyo resultado será inferior al usual para los áridos utilizados.

Ensayos mecánicos

Las mezclas bituminosas con polvo de caucho, por su mayor contenido de ligante, pueden dar lugar a deformaciones Marshall superiores a las de las mezclas convencionales, sin que ello suponga una tendencia a las deformaciones plásticas. En consecuencia, es conveniente modificar los criterios del parámetro de deformación Marshall, aumentándolo en 0,5 mm. Los mayores contenidos de ligante dan lugar a curvas de estabilidad Marshall más planas que las de las mezclas convencionales y estabilidades reducidas y más dispersas.

El óptimo de ligante es el contenido máximo que permite cumplir los criterios volumétricos, manteniendo a la vez, en el ensayo de pista, velocidades de deformación dentro de la especificación. Para las mezclas bituminosas tipo S, D y F fabricadas con ligantes convencionales es siempre necesario realizar el ensayo en pista de laboratorio; pero con betunes con polvo de caucho es imprescindible, ya que ésta es la única manera de determinar la validez de los elevados contenidos de betún que se utilizan.
Hay que tener en cuenta la conveniencia de que el ensayo de pista de laboratorio cumpla también las especificaciones para contenidos de ligante un 0,3% superiores al óptimo de la fórmula de trabajo. Independientemente de la zona térmica de la obra, se recomienda exigir máximas velocidades de deformación inferiores a 12 μm/min.

En mezclas drenantes los valores recomendados para las exigencias de pérdida en el ensayo cántabro en seco y tras inmersión son de 20% y 35% respectivamente. Respecto a las mezclas discontinuas tipo M, dichos parámetros serían de 15% y 25%.

En mezclas semidensas, densas y discontinuas tipo F, la resistencia a la acción del agua se evaluará mediante el ensayo de inmersión-compresión, exigiéndose pérdidas de resistencia inferiores al 25%. Se debe exigir esta resistencia conservada para un contenido de ligante inferior en 0,3% al óptimo.

En la dosificación de mezclas por vía seca es necesario establecer el periodo de maduración, en base a la variación de los ensayos definidos en los párrafos anteriores a tiempos crecientes de maduración. El resultado obtenido se deberá verificar en obra.
4. FABRICACIÓN DE LIGANTES Y MEZCLAS CON POLVO DE CAUCHO

Este apartado presenta los procedimientos de fabricación de:
- los ligantes modificados de alta viscosidad con caucho, BMAVC,
- los betunes modificados/mejorados con caucho, y
- las mezclas fabricadas con los ligantes anteriores o modificadas con caucho en el mezclador.

4.1. FABRICACIÓN DE BETUNES CON CAUCHO EN EL LUGAR DE EMPLEO

Aunque el proceso general de fabricación del betún modificado con caucho es siempre el mismo, los equipos y los procedimientos de fabricación pueden ser diferentes. Es indispensable, por tanto, que el fabricante disponga de un manual de calidad que, una vez aprobado por la Administración, permita a ésta controlar y seguir el proceso.

El mezclado en el lugar de empleo se realiza generalmente en unidades móviles. Las instalaciones van provistas de una tolva para la alimentación del caucho y de uno o dos tanques. El polvo de caucho se deposita en la tolva mediante una cinta o grúa, después de pasar por un dispositivo de pesaje. En unos sistemas, el mezclado y la reacción se producen en una única cámara mediante un sistema de agitación. Otros están provistos de dos cámaras. En la primera el betún se mezcla con el caucho y el conjunto pasa al tanque de agitación para que se produzca la maduración. Es necesario agitar la mezcla de betún y caucho continuamente para mantener las partículas de caucho dispersas. Si no se hace así, las partículas tienden a depositarse en el fondo o a flotar en la superficie del tanque. Con la agitación, el caucho absorbe las fracciones más ligeras del betún y se hincha, favoreciéndose la dispersión.

Las unidades móviles se colocan en la central de fabricación de mezclas bituminosas. La figura 4.1 presenta una fotografía de una disposición típica.

Figura 4.1
Esquema operativo para ejecución de obra en una central de fabricación de mezclas bituminosas con aplicación de BMAVC
La central debe tener espacio suficiente para los equipos y para el almacenamiento del caucho. Se necesitan entre 20 y 60 m² aproximadamente para los equipos de fabricación y una zona horizontal, protegida de la lluvia y del sol, para el almacenamiento de las sacas de polvo de caucho.

Para las aplicaciones por vía húmeda el polvo de caucho se suele ensacar en bolsas de unos 1.000 kg, aunque puede hacerse en menores cantidades, si interesa.

La temperatura de mezclado es crítica para el proceso. Un betún que se haya mezclado con caucho a una temperatura incorrecta nunca alcanzará las mismas características que las obtenidas en el laboratorio, aunque se lleguen a cumplir las especificaciones fijadas para el ligante. Por otro lado, si se fabrica a temperaturas más bajas, la maduración tarda mucho más tiempo en desarrollarse o puede no completarse. Como regla general, el tiempo necesario para dispersar, mezclar e interaccionar el polvo de caucho en el betún se duplica cuando la temperatura del betún se reduce en diez grados centígrados.

Las temperaturas necesarias para alimentar el betún en la entrada a la unidad de mezclado dependen del equipo de fabricación, y en general están comprendidas entre los 165ºC y los 190ºC. Las temperaturas no deben en ningún caso sobrepasar los 200ºC, para evitar la degradación del betún y la emisión de sustancias nocivas.

Para que el control de la temperatura sea efectivo, las cámaras de mezclado y los tanques de almacenamiento deben aislarse y, en su caso, estar provistos de calentadores o intercambiadores de calor, tanto para el betún original como para el betún con caucho. Los termómetros o lectores de los sensores de temperatura deben estar siempre visibles.

El tiempo de maduración depende del sistema, de la composición, tipo y proporción de los componentes (betún, polvo de caucho, aditivos...), así como de las condiciones de fabricación, pudiendo variar entre 10 y 60 min. Se debe confirmar el tiempo que se haya establecido previamente en el laboratorio.

Después de la maduración, el betún se bombea desde la unidad móvil al mezclador de la central de mezcla bituminosa. El equipo debe ir provisto de bombas y tuberías de conexión que puedan manejar betunes de gran viscosidad.

En la conexión con el circuito de la central se suele colocar una válvula de tres vías, de manera que se pueda alimentar al mezclador con betún convencional o con betún con caucho, según la mezcla que se vaya a fabricar.

El betún con caucho se fabrica justo antes de su empleo. No obstante, se puede almacenar a temperaturas elevadas, aunque inferiores a las de mezclado, durante unas horas. Hay que tener en cuenta que las propiedades de los betunes con caucho se suelen mantener sin alterarse unas 24 h para temperaturas de hasta 175ºC.

Si las condiciones climáticas o alguna otra razón justificasen la parada de la fabricación de mezcla bituminosa, el ligante se puede dejar enfriar y luego recalentarse, aunque la mayoría de las especificaciones limitan a dos el número de recalentamientos. Con tiempos de almacenamiento más prolongados, y en especial si se utiliza polvo de caucho de granulometría fina, la viscosidad del ligante puede disminuir. Para temperaturas superiores a los 175ºC se puede producir la pérdida de viscosidad en unas 3 a 6 h, por lo que conviene utilizar el betún rápidamente. En estos casos es necesario verificar las características del ligante y, si no cumpliese las especificaciones, hacer las modificaciones necesarias para alcanzarlas.

4.2. FABRICACIÓN DEL BETÚN CON CAUCHO EN CENTRAL

La fabricación de betunes modificados/mejorados con caucho en centrales de betunes se suele realizar en las mismas instalaciones de fabricación que los betunes modificados con polímeros, con procedimientos específicos de cada fabricante, y generalmente patentados. El procedimiento para conseguir la estabilidad de la mezcla betún-caucho depende del fabricante, si bien se utilizan generalmente estabilizantes químicos o elastoméricos.

Las unidades de fabricación del ligante modificado/mejorado disponen generalmente de dispositivos de mezclado con elevado poder de cizallamiento y permiten dispersar enérgicamente las partículas de polvo de caucho. Los productos obtenidos suelen ser más homogéneos que los fabricados in situ. Sin embargo, los porcentajes de caucho admisibles para conseguir betunes con caucho estables o para poder manejarlos adecuadamente en estas instalaciones convencionales, son generalmente menores que
los que permiten los procedimientos de fabricación in situ.

4.3. FABRICACIÓN DE MEZCLAS BITUMINOSAS POR VÍA HÚMEDA

La utilización de BMAVC o betunes modificados/mejorados tiene muy poca influencia en las operaciones de las centrales de fabricación de mezclas. El único aspecto singular es la necesidad, en algunos casos, de aumentar la temperatura de trabajo para obtener las temperaturas de fabricación necesarias para el manejo de un material de elevada viscosidad.

En los tipos BMAVC, fabricados “in situ”, otro aspecto de interés es la importancia de la coordinación de la fabricación del ligante y de la mezcla bituminosa, ya que se debe disponer de suficiente BMAVC para la producción de mezcla bituminosa deseada. Esto obliga a adelantar la jornada de fabricación del betún modificado.

Además, hay que ajustar la producción de la central de fabricación de mezcla bituminosa a la de la de fabricación de betunes con caucho. Las centrales de fabricación de ligantes en el lugar de empleo que hay actualmente en España, tienen capacidades comprendidas entre 9 y 12 t/h, lo que permite mantener la producción de las centrales de mezclas bituminosas en 150 a 200 t/h, que son las más usuales para la fabricación de mezclas convencionales. Si se fabrican mezclas con gran cantidad de betún, la producción puede verse reducida.

Por otro lado, no parece necesario realizar operaciones de limpieza adicionales cuando se cambia de utilizar betún con polvo de neumático a otro tipo de betunes.

4.4. FABRICACIÓN DE MEZCLAS BITUMINOSAS CON CAUCHO AÑADIDO AL MEZCLADOR

En la fabricación de mezclas bituminosas por la vía seca en España se han utilizado centrales discontinuas, aunque en otros países hay también experiencia con centrales continuas.

Es muy importante controlar adecuadamente la cantidad de polvo de caucho que se añade a la mezcla bituminosa, ya que este contenido es muy crítico para el buen comportamiento de la misma. Por ello, el sistema de adición debe ser siempre ponderal y la precisión de la báscula debe ser del orden del 0,3 por mil.

En algunos casos se han utilizado los silos de polvo mineral de aportación para la alimentación automática del polvo de caucho, pero se cuenta también con equipos diseñados específicamente para la incorporación de aditivos, bien en bolsas o a granel, provistos de silo, dosificador ponderal y cintas transportadoras. Estas instalaciones ocupan poco espacio y son relativamente económicas.

La alimentación manual en sacos únicamente es conveniente para obras pequeñas o muy pequeñas dotaciones de polvo de caucho. Si se utiliza este sistema, los sacos se pueden abrir y volcar en una cinta transportadora o directamente en el mezclador. Cuando se añaden directamente al mezclador, deben ser de polietileno de baja densidad y de bajo punto de fusión, sin nudos o ataduras que entorpezcan el proceso de fundido, y no deben pesar más de 20 kg.

Las diferencias principales respecto a la fabricación de mezclas convencionales son las siguientes:

- Se debe aumentar la temperatura de fabricación (son usuales las temperaturas entre 175°C y 180°C a la salida del mezclador en mezclas semidensas o discontinuas de tipo F, y de 160°C con mezclas drenantes o discontinuas tipo M).

- En el amasado se incorpora primero el polvo de caucho a los áridos y después de unos segundos de mezclado se añade el betún. Para garantizar la homogeneidad del reparto del polvo de caucho y su envuelta con el betún son necesarios mayores tiempos de amasado. A título de ejemplo, en mezclas con el 1% del polvo de caucho el tiempo total de amasado se debe aumentar aproximadamente entre un 10-15% respecto al tiempo de una mezcla convencional.

- Hay que tener en cuenta que las mezclas con polvo de caucho ocupan, a igualdad de peso, más de volumen que una mezcla convencional. El aumento es del orden del 1 al 5%, según la dotación de caucho.

- Las técnicas de vía seca requieren un período de almacenamiento en silo o en camión para que el material termine de madurar y no continúe su hinchamiento después de la puesta en obra. El tiempo de maduración se determina en el laboratorio y se debe comprobar en obra.
5. PUESTA EN OBRA

Este capítulo presenta los aspectos característicos de la puesta en obra de las mezclas bituminosas fabricadas por vía seca o vía húmeda.

5.1. TRANSPORTE

El transporte de las mezclas con polvo de caucho fabricadas por vía seca o húmeda puede hacerse en los camiones convencionales para el transporte de mezcla bituminosa. Estas mezclas son más sensibles a la disminución de la temperatura, por ello los camiones deben ir siempre cubiertos, excepto para distancias muy cortas.

Al igual que con otras mezclas bituminosas, si se utilizan líquidos antiadherentes en la caja de los camiones, estos deben ser del tipo agua jabonosa o emulsiones de silicona, pero nunca deben contener disolventes o fuel.

5.2. EXTENSIÓN

La puesta en obra de las mezclas bituminosas que incorporan polvo de caucho por vía seca o vía húmeda se realiza con extendedoras convencionales. Las únicas precauciones a adoptar son las de extremar las medidas que eviten el enfriamiento prematuro de la mezcla bituminosa, ya que su elevada viscosidad hace muy difícil la compactación a temperaturas inferiores a 120ºC, a las que algunas mezclas convencionales son todavía manejables.

Las mezclas con polvo de caucho únicamente deben extenderse cuando las condiciones climáticas sean favorables. La temperatura del soporte también debe ser adecuada (superior a 10ºC). Si la temperatura del soporte es baja o el tiempo frío y con viento intenso, la mezcla se enfriará muy rápidamente y será muy difícil su puesta en obra. Este aspecto debe cuidarse más, si cabe, que en las mezclas con betunes convencionales, y es más crítico con las mezclas bituminosas más viscosas, es decir las fabricadas por vía húmeda que incorporan ligantes más duros o más viscosos, o por vía seca en aquellas que tengan una mayor dotación de polvo de caucho.

La mezcla que entre en la extendedora debe fluir libremente, ser homogénea y no deben apreciarse segregaciones ni arrastres o escurrimientos de ligante.

El material debe suministrarse de manera que la extendedora pueda trabajar sin paradas. De lo contrario, el material bajo la regla se enfría muy rápidamente y se puede formar una ondulación que luego es muy difícil eliminar.

El material que se retire de las juntas debe eliminarse en vez de volver a extenderlo sobre el pavimento.

5.3. JUNTAS

Las juntas longitudinales en las capas de rodadura, si se hacen en frío, se deben cortar siempre e imprimirse antes de extender el carril adyacente. Si se deja el material frío, sin compactar, se puede deteriorar muy rápidamente con el paso del tráfico.

5.4. COMPACTACIÓN

La compactación se puede hacer con los equipos convencionales de rodillos metálicos y de neumáticos, teniendo en cuenta las siguientes consideraciones:

- Con mezclas abiertas o discontinuas no debe utilizarse vibración.
- Las mezclas con caucho tienen una mayor adherencia a los compactadores que las convencionales por lo que es imprescindible el empleo de líquidos antiadherentes.
- Con las mezclas de contenido elevado de caucho no deben utilizarse compactadores de neumáticos, ya que tienden a levantar el material.

El número de compactadores es función de la producción de la central de fabricación, ancho de extendido, espesor de la capa y temperatura ambiente, de la superficie de extendido y de los materiales; así como del tipo de mezcla.

La compactación debe iniciarse lo antes posible y con la mezcla a temperatura elevada, a unos 160ºC con BMAVC, y a unos 150ºC con BMC, BC o con mezclas modificadas por la vía seca, para que se alcance la densidad requerida mientras la
mezcla está suficientemente caliente, antes de que se rigidice demasiado. Los compactadores deben ir tan próximos a la extendadora como sea posible, sin que se produzcan levantamientos del material u ondulaciones de la mezcla al paso del rodillo. La compactación principal debe estar finalizada cuando se alcancen los 130ºC y la de superficie cuando se alcancen los 115ºC.

Usualmente, con mezclas tipo semidenso, es suficiente con dos a cuatro pasadas con un rodillo vibratorio a alta frecuencia y baja amplitud, aunque las condiciones de compactación pueden variar con la granulometría y los componentes de las mezclas.

En las mezclas fabricadas por la vía seca con elevado contenido de caucho suele ser necesario que el compactador continúe su trabajo hasta que la temperatura de la mezcla bituminosa sea inferior a los 80ºC. Como el caucho sólo ha reaccionado parcialmente, el material de la capa compactada continúa la reacción al encontrarse a temperaturas elevadas. La reacción hace que la mezcla aumente de volumen y se expanda. La compactación adicional mantiene la densidad de la tongada hasta que el aumento de viscosidad del ligante pueda contrarrestar el potencial decreciente del material a expandirse. Estos efectos son menores cuanto más fino sea el polvo de caucho añadido, en menor dotación se encuentre y mayor tiempo de espera haya transcurrido entre la fabricación y la compactación, de manera que en algunos casos no es necesario variar las pautas de compactación con respecto a otras mezclas. En cualquier caso, es necesario establecer el procedimiento más adecuado de compactación en el tramo de prueba. Hay que tener en cuenta que el mayor tiempo de compactación suele exigir la utilización de un rodillo adicional.

Si el material extendido debe abrirse al tráfico antes de que se enfríe completamente, puede ser conveniente extender un arenado antes de la apertura del tráfico.
6. CONTROL DE CALIDAD

Las determinaciones a realizar en el control de calidad de las unidades de obra incluidas en este Manual y las frecuencias para cada una de ellas se presentan en las propuestas de los artículos correspondientes incluidos en el Anejo 5.

Se indican a continuación los principales procedimientos de control de estos materiales y, en su caso, las diferencias con respecto a los que se realizan con otras unidades de obra similares.

Los ensayos de control sobre los betunes convencionales y sobre los áridos son los usuales para estos materiales, pero algunos de los ensayos sobre el polvo de caucho, el BMAVC y las mezclas bituminosas necesitan equipos especiales o presentan modificaciones respecto a los ensayos convencionales, y por lo tanto debe instruirse a los operarios para que los realicen correctamente y a los técnicos de control para que los interpreten de manera adecuada.

6.1. POLVO DE CAUCHO

Toma de muestras

Las partículas de caucho tienden a aglomerarse en presencia de agua y además se segregan fácilmente. La segregación no es un problema importante durante la fabricación del material ya que el polvo de caucho se añade al betún o a la mezcla en cantidades significativas, y posteriormente se homogeniza en el mezclador de la central, lo que minimiza los efectos de la segregación, pero puede presentar problemas durante la toma de muestras. Por tanto, esta operación debe hacerse cuidadosamente, preferiblemente empleando un tubo para toma de muestras, y cogiendo el material del centro del contenedor y nunca de la superficie.

Granulometría

En el Anejo 2 se recoge un procedimiento modificado de la Norma UNE 933-1, que incluye la utilización de esferas de goma en los tamices para facilitar el tamizado de las partículas y, si fuese necesario, la adición de polvo de talco para deshacer las aglomeraciones. También hay que descontar las posibles impurezas, materiales metálicos, textiles, arenas, para determinar la granulometría real del polvo de caucho.

Agua

El procedimiento de la Norma UNE 3 103 300 se considera adecuado, si bien se modifica la temperatura de calentamiento (véase Anejo 2).

Impurezas

Los ensayos correspondientes para determinar metales, textiles, y contaminaciones con arenas o arcillas no están normalizados. Se presentan unos procedimientos operativos en el Anejo 2.

6.2. BETÚN MODIFICADO DE ALTA VISCOIDAD CON CAUCHO Y BETÚN MODIFICADO/MEDADO CON POLVO DE CAUCHO

Toma de muestras

La toma se debe hacer antes de la entrada del ligante al mezclador. Se debe permitir la salida de al menos 4 l de ligante antes de la toma de muestras para asegurar la limpieza de la válvula. Las muestras de betún con caucho se verterán en un contenedor limpio y seco que se sellará e identificará a continuación.

Preparación de las muestras para los ensayos

En la preparación de las muestras para los ensayos correspondientes, debe tenerse la precaución de agitar el ligante durante el calentamiento antes del vertido en los moldes para asegurar la homogeneidad del producto.

Caracterización del ligante con polvo de caucho

Los procedimientos de ensayo son los mismos que se emplean para caracterizar los betunes modificados con polímeros, que están descritos en las normas de ensayo correspondientes.

Los BMAVC presentan algunas peculiaridades que hay que tener en consideración. La primera es la presencia de partículas semisólidas que suponen una heterogeneidad en el betún, y que pueden
afectar a la repetibilidad de los ensayos. La segunda es que los resultados de los ensayos son muy dependientes de la temperatura, y por lo tanto debe controlarse con la adecuada precisión. Por ello es conveniente que el resultado del ensayo de control sean la media de varias determinaciones y que se aumente la frecuencia de los ensayos.

Determinación del polvo de caucho

El contenido de polvo de caucho se puede determinar mediante pesada en la propia instalación. También puede hacerse sobre el ligante realmente fabricado mediante el ensayo de solubilidad en disolventes orgánicos, aunque se debería realizar previamente un calibrado.

6.3. MEZCLAS BITUMINOSAS

Contenido de betún y de polvo de caucho

La determinación del contenido de betún puede realizarse mediante métodos de extracción, empleando los disolventes de uso generalizado en las mezclas convencionales, como son los productos clorados que se utilizan regularmente, aunque también pueden emplearse los nuevos disolventes biodegradables. Asimismo, es de aplicación el procedimiento del horno de combustión.

Si se utilizan métodos de extracción con disolventes, el contenido de ligante que se obtiene es el del betún de penetración y el extracto soluble del caucho, más la parte más fina del polvo de caucho que puede pasar a través del papel de filtro o el tamiz del equipo de extracción. Por tanto, en las técnicas de vía húmeda el contenido de betún obtenido será ligeramente inferior al de la fórmula de trabajo y en los de vía seca ligeramente superior.

Si se utiliza el método del horno de combustión, en las mezclas fabricadas por la vía húmeda se deberá obtener un contenido de ligante análogo al de la fórmula de trabajo y en las técnicas por vía seca el resultado será la suma del contenido de ligante y el del polvo de caucho (menos sus propias cenizas).

Es por tanto necesario llevar a cabo una calibración previa del procedimiento empleado, incorporando en laboratorio una cantidad conocida de polvo de caucho al betún o a la mezcla. La extracción del betún o recuperación de áridos con el procedimiento que se vaya a utilizar en el control permite calcular un coeficiente de calibración que se puede comprobar posteriormente en amasadas de prueba.

En los métodos de extracción se recuperará el polvo de caucho una parte con los áridos y la otra más fina con el ligante. En los métodos de combustión se determinará el contenido de polvo de caucho conjuntamente con el betún. Por ello, es necesario realizar previamente una calibración con una mezcla bituminosa de idéntica composición a la extendida en obra. En los procedimientos por vía seca pueden determinarse también dotaciones medias de polvo de caucho mediante el control de suministros o de las pesadas en la central de fabricación.

Granulometría del árido

Aunque pueden quedar partículas de caucho retenidas en los tamices correspondientes a los áridos de menor tamaño, dado el pequeño porcentaje de polvo de caucho que se utiliza y su baja densidad relativa, puede considerarse que su contribución a la determinación granulométrica es despreciable.

Ensayos mecánicos

Deben tenerse en cuenta las modificaciones relativas a la deformación Marshall señaladas en el apartado 3.3 de este Manual.
7. REFERENCIAS BIBLIOGRÁFICAS

BIBIOGRAFÍA EXTRANJERA

BIBIOGRAFÍA ESPAÑOLA

ANEJOS
ANEJO 1
DEFINICIONES

- **Caucho natural**: producto natural que se extrae del árbol del Hevea en forma de láctex, y que posteriormente se coagula y seca; está constituido fundamentalmente por cis-1,4-polipreno.

- **Cauchos sintéticos**: nombre genérico de todos los cauchos obtenidos por síntesis.

- **Polvo de caucho**: material constituido por partículas finas de caucho natural y sintético vulcanizado de tamaños inferiores a 2 mm, obtenido triturando los neumáticos fuera de uso y separando los metales, tejidos y otras impurezas que puedan incorporar.

- **Betún modificado con polvo de caucho (BMC)**: ligante hidrocarbonado resultante de la interacción físico-química de betún asfáltico, polvo de caucho procedente de neumáticos fuera de uso y, en su caso, aditivos, que cumple las especificaciones establecidas en el artículo 215 del PG-3. El contenido de polvo de caucho suele ser superior al 12% e inferior al 15% en peso de la mezcla total.

- **Betún mejorado con polvo de caucho (BC)**: ligante hidrocarbonado resultante de la interacción físico-química de betún asfáltico, polvo de caucho procedente de neumáticos fuera de uso y, en su caso, aditivos, que no cumple las especificaciones de los betunes modificados del artículo 215 del PG-3, pero sí las especificaciones establecidas en el Anejo 4 de este Manual. El contenido de polvo de caucho es generalmente superior al 8% e inferior al 12% en peso de la mezcla total.

- **Betún modificado de alta viscosidad con caucho (BMAVC)**: ligante hidrocarbonado que tiene elevada viscosidad, resultante de la interacción físico-química de betún asfáltico, polvo de caucho procedente de neumáticos fuera de uso y, en su caso, aditivos. El contenido de polvo de caucho es superior al 15% en peso de la mezcla total.

- **Neumático fuera de uso**: Es el neumático que se ha convertido en residuo de acuerdo con lo establecido en el artículo 3.a) de la Ley 10/1998 de 31 de Abril. En general se corresponde con el neumático retirado de manera permanente de un vehículo, sin la posibilidad de volver a ser montado para circular en carretera, por no cumplir las normas de seguridad vigentes.

- **Recauchutado**: conjunto de operaciones, destinadas a dotar al neumático usado de una segunda vida, consistentes fundamentalmente en la sustitución de la banda de rodadura usada del neumático por una nueva.

- **Reciclado**: transformación de los neumáticos fuera de uso, dentro de un proceso de producción, para su fin inicial o para otros fines. No se incluye en este concepto la recuperación de energía.

- **Reutilización**: empleo de neumáticos usados para el mismo fin para el que fueron diseñados originariamente.

- **Valorización**: procedimiento que permita el aprovechamiento de los recursos contenidos en los neumáticos fuera de uso sin poner en peligro la salud humana y sin utilizar medios que puedan causar perjuicios al medio ambiente. En él se incluye el reciclado.

- **Vulcanización**: proceso que consiste en unir las cadenas moleculares del caucho entre sí, y que permite transformar un material plástico en elástico.

- **Negro de carbono**: material constituido por finísimas partículas de carbono de forma esférica con diámetros inferiores a 100nm, generalmente aglomeradas en otras de mayor tamaño.
- **Vía húmeda**: proceso en el que se mezcla previamente el polvo de caucho con el betún para su posterior empleo como ligante en la mezcla bituminosa.

- **Vía seca**: proceso en el que el polvo de caucho se introduce directamente en el mezclador de la central de fabricación de mezclas bituminosas, junto con el betún y los áridos.

- **Chips**: trozos de forma irregular y tamaños aproximados entre 10 y 50 mm, que resultan de fragmentar mecánicamente, romper o rasgar neumáticos fuera de uso.

- **Molienda criogénica**: tecnología que emplea temperaturas muy bajas, conseguidas mediante nitrógeno líquido o refrigerantes comerciales, para fragilizar el caucho y reducirlo de tamaño.

- **Cortes (cuts)**: trozos de forma irregular y tamaño superior a 300 mm, que resultan de fragmentar mecánicamente, romper o rasgar neumáticos fuera de uso.

- **Recuperación energética (energy recover)**: extracción del valor calorífico o energético de neumáticos fuera de uso.

- **Granulado de caucho (granulate)**: partículas dispersas de tamaño comprendido entre 1 mm y 10 mm resultantes de reducir el tamaño de los neumáticos fuera de uso.

- **Caucho regenerado (rubber reclaim)**: material obtenido tratando residuos de caucho vulcanizado de manera que se recuperen algunas de sus características originales.

- **Trazos (shred)**: elementos de forma irregular y tamaño comprendido entre 5 mm y 300 mm, que resultan de fragmentar mecánicamente, romper o rasgar neumáticos fuera de uso.

- **Mezcla bituminosa en caliente modificada con polvo de caucho**: es la combinación de un ligante hidrocarbonado, áridos (incluido el polvo mineral), polvo de caucho y, eventualmente, aditivos, de manera que todas las partículas del árido queden recubiertas por una película homogénea de ligante.

- **Maduración**: es el proceso de interacción entre el polvo de caucho y el betún asfáltico, en el que el caucho absorbe las fracciones más ligeras del betún aumentando la viscosidad del ligante.
ANEJO 2

ESPECIFICACIONES DEL POLVO DE CAUCHO PARA MATERIALES BITUMINOSOS

1 DEFINICIÓN

Se define como polvo de caucho para materiales bituminosos aquél que está compuesto fundamentalmente por caucho natural y caucho sintético, que resulta de triturar neumáticos fuera de uso hasta tamaños inferiores a 2 mm y que es de aplicación para la fabricación de betunes modificados/mejorados o mezclas bituminosas para carreteras.

A efectos de aplicación de este artículo, se distinguen tres tipos de polvo de caucho, según su huso granulométrico (P-1, P-2 y P-3), con tamaños máximos nominales de 1,5 mm, 0,5 mm y 0,25 mm, respectivamente.

2 CARACTERÍSTICAS QUÍMICAS

El suministrador aportará la composición del polvo de caucho de cada partida. La composición química del polvo de caucho cumplirá las especificaciones de la Tabla 1.

Tabla 1. Composición química

<table>
<thead>
<tr>
<th>Composición</th>
<th>Método de ensayo</th>
<th>Contenido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mínimo</td>
</tr>
<tr>
<td>Extracto acetónico</td>
<td>UNE 53651</td>
<td>7,5</td>
</tr>
<tr>
<td>Cenizas</td>
<td>UNE 53543</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>UNE 53570</td>
<td>20,0</td>
</tr>
<tr>
<td>Negro de carbono</td>
<td>ISO 6528-1 a 3</td>
<td>-</td>
</tr>
<tr>
<td>Azufre</td>
<td>ISO 5945</td>
<td>21,0</td>
</tr>
<tr>
<td>Caucho natural</td>
<td>ISO 6528-1 a 3</td>
<td>-</td>
</tr>
</tbody>
</table>

3 CARACTERÍSTICAS FÍSICAS

La densidad relativa de las partículas de caucho, según la Norma UNE 53526, debe estar comprendida en el intervalo de 1,15 ± 0,05.

El contenido de agua deberá ser inferior al 0,75%. La determinación se realizará de acuerdo con la Norma UNE 103 300 -3, excepto en lo relativo a la temperatura de calentamiento en la estufa, que será de 105±5ºC.

La granulometría del polvo de caucho deberá estar comprendida dentro de algunos de los husos definidos en la Tabla 2. La determinación de la granulometría se hará de acuerdo con la Norma UNE-EN 933-1, aplicando el procedimiento modificado que se incluye al final de este anejo.

Tabla 2. Husos granulométricos

<table>
<thead>
<tr>
<th>TAMIZ (UNE EN 933-2) mm</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5</td>
<td>75 – 100</td>
<td>45 – 90</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>30 – 80</td>
<td>5 – 50</td>
<td>5 – 70</td>
</tr>
<tr>
<td>0,500</td>
<td>5 – 30</td>
<td>0 – 15</td>
<td>0 – 15</td>
</tr>
<tr>
<td>0,250</td>
<td>0 – 30</td>
<td>0 – 15</td>
<td>0 – 15</td>
</tr>
<tr>
<td>0,125</td>
<td>0 – 15</td>
<td>0 – 15</td>
<td>0 – 15</td>
</tr>
</tbody>
</table>
Las tolerancias de la granulometría del material suministrado respecto a la granulometría media establecida por el fabricante para cada partida, son del 10% para los tamices superiores a 1 mm y del 7% para éste tamiz y los inferiores.

4 CONTAMINANTES

El contenido de materiales ferromagnéticos no sobrepasará el 0,01% en peso del polvo de caucho. Para determinar este contenido se pasará repetidamente un imán sobre una muestra de polvo de caucho de 50 g. Después se pesará el material atrapado por el imán.

El contenido de materiales textiles no excederá el 0,5% en peso del polvo de caucho. Su determinación se hará retirando y pesando, durante el ensayo granulométrico, las aglomeraciones de textiles de cada tamiz. El peso de los materiales textiles no se considerará en la granulometría del polvo de caucho.

El contenido de cualquier otro tipo de impurezas, como arena, madera, vidrio, etc. no sobrepasará el 0,25% en peso del polvo de caucho. Los contaminantes minerales se determinarán por separación en solución salina. Para ello, se dispersará una muestra de 50 g de polvo de caucho en un litro (1 l) de agua salina, compuesta por una (1) parte de sal común en tres (3) partes de agua destilada. Después de un tiempo de espera no menor de 30 minutos se considerará como contaminante mineral todo el material que no flote en el agua.

5 SUMINISTRO Y ALMACENAMIENTO

El polvo de caucho se transportará a obra en cisternas o en sacas fabricadas de un material que evite la entrada de agua. Las sacas deberán almacenarse en una zona seca, protegida de la lluvia y del sol. El tamaño de las sacas deberá ser aprobado por el Director de las Obras. Si el polvo de caucho se va a añadir directamente al mezclador, en bolsas, éstas deberán ser de polietileno de baja densidad, con una temperatura de fusión inferior a 115ºC.

El polvo de caucho será homogéneo y deberá poder fluir libremente. Se podrá añadir hasta un 4%, en masa del polvo de caucho, de talco o de carbonato cálcico para evitar la aglomeración de partículas.

Previamente a la aceptación del polvo de caucho se deberá aportar la siguiente documentación:

- documento acreditativo del origen del material,
- documento acreditativo de que la valorización del polvo de caucho está autorizada por el órgano ambiental de la Comunidad Autónoma en la que se ha ejecutado la valorización.

Cada partida vendrá acompañada de un albarán en el que constarán al menos los siguientes datos:

- nombre y dirección de la empresa suministradora,
- nombre y dirección del fabricante,
- fechas de fabricación y de suministro,
- número de lote de fabricación,
- descripción del producto según el origen del neumático (camión, turismo, mezcla de ambos (indicando la proporción) u otro origen), procedimiento de trituración (mecánico, criogénico, etc.), tamaño máximo y huso granulométrico,
- identificación del vehículo de trasporte,
- cantidad que se suministra,
- denominación comercial, si la hubiere,
- nombre y dirección del comprador y del destino,
- condiciones de almacenamiento,
- ficha de datos de seguridad del producto.

Además, cada partida vendrá acompañada de una hoja de características, en la que constarán al menos los siguientes datos:

- composición química,
- granulometría media del triturado,
6 CONTROL DE CALIDAD

De cada partida que llegue a la obra se tomarán dos (2) muestras de, al menos, un kilogramo (1 kg), y sobre una de ellas se realizarán los siguientes ensayos:

- granulometría según el procedimiento UNE EN 933-1, con las modificaciones señaladas en el Anejo 2, y utilizando los tamices 2; 1,5; 1; 0,5; 0,25; 0,125 y 0,063 mm (serie UNE EN 933-2),
- humedad mediante el secado en estufa (UNE 3 103 300), y
- los contenidos de materiales metálicos, materiales textiles y de otras impurezas, según los procedimientos señalados en este artículo.

La otra muestra se conservará hasta el final del período de garantía.

Siempre que se observen cambios en el aspecto del material, o se sospeche que por prácticas inadecuadas se ha podido producir alguna segregación o contaminación, se realizarán nuevos ensayos de granulometría y de impurezas. Asimismo, si las condiciones meteorológicas y/o el sistema de almacenamiento en obra del caucho lo aconsejasen, se comprobará durante el almacenamiento en obra que la humedad está dentro del límite admitido en este Pliego de Prescripciones.

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO POR VÍA SECA
DE LAS PARTÍCULAS DE POLVO DE CAUCHO
PROCEDENTE DE NEUMÁTICOS FUERA DE USO

1. OBJETO Y CAMPO DE APLICACIÓN

Esta norma tiene como objeto definir un método de ensayo para determinar la granulometría del polvo de caucho mediante tamizado en seco. Se aplica a partículas de caucho procedentes de la trituración de neumáticos fuera de uso, con un tamaño máximo nominal superior a 63 μm, excluyendo las partículas de tamaño inferior.

2. FUNDAMENTO

2.1 El ensayo consiste en separar, mediante una serie de tamices, una muestra de polvo de caucho pesada y seca, en varias fracciones de tamaño decreciente de partícula. La abertura y el número de tamices se seleccionan según la naturaleza de la muestra y la precisión requerida. El tamizado se realiza por vía seca. A cada porción de muestra para ensayo se le adiciona una cantidad fija de polvo de talco para facilitar la separación de las partículas de caucho.

2.2 La masa de las partículas retenidas en los diferentes tamices se expresa como porcentaje respecto de la masa inicial del material. Los porcentajes acumulados de material que pasa por cada tamiz se presentan en forma numérica y, si es oportuno, en forma gráfica.

2.3 Para el tamizado del polvo de caucho se dispone de un juego de entre 4 y 6 tamices, escogidos en función de la definición del huso granulométrico correspondiente.
3. APARATOS Y MATERIAL NECESARIOS

3.1 A no ser que se establezca de otra manera, todo aparato debe cumplir los requisitos generales de la norma UNE EN 933, partes 1 y 2.

3.2 TAMICES DE ENSAYO, de aberturas tal y como se especifica en la norma UNE EN 933-2, y de acuerdo con los requisitos de las normas ISO 3310-1 e ISO 3310-2.

3.3 TAPA Y BANDEJA DE FONDO HERMÉTICAS, para los tamices.

3.4 BALANZA DE PRECISIÓN, con un error máximo de ± 0,1 % de la masa de la muestra de ensayo.

3.5 BANDEJAS, CEPILLOS.

3.6 ESFERAS DE CAUCHO, con un diámetro comprendido entre 25 mm y 50 mm, en número suficiente para que se disponga de 2 esferas por tamiz.

NOTA 1. Se han empleado esferas de porcelana, de diámetro \((20,0 \pm 0,5) \text{ mm}\) y masa \((11,5 \pm 0,5) \text{ g}\), con resultado análogo.

3.7 POLVO DE TALCO, generalmente formado por una mezcla de silicatos de magnesio y magnesio-aluminio, óxido de magnesio y sílice, y en el que al menos el 90% de la masa de las partículas tiene un tamaño inferior a 40 \(\mu\text{m}\).

3.8 MÁQUINA DE TAMIZAR (optativa).

3.9 ESTUFA, para el secado de muestras húmedas, capaz de mantener una temperatura de \((110 \pm 5) ^\circ\text{C}\).

4. PREPARACIÓN DE LAS MUESTRAS DE ENSAYO

4.1 Las muestras de polvo de caucho se toman de las bolsas, silos o depósitos en los que se encuentre el material y se reducen de acuerdo con la norma UNE EN 932-2, con el fin de obtener el número requerido de porciones de ensayo.

4.2 La masa de cada porción de ensayo será de unos 100 g.

NOTA 2. Si la masa de las porciones de ensayo es distinta de lo requerido, el análisis granulométrico obtenido no cumple con esta norma y deberá indicarse en el informe del ensayo.

4.3 Si la porción contiene humedad, se seca en estufa a una temperatura de \((110\pm 5)^\circ\text{C}\) hasta masa constante. Posteriormente se deja enfriar a temperatura ambiente, se determina su masa con aproximación a 1 g y se registra como \(M_1\).

NOTA 3. Si se observa la presencia en la porción de ensayo, de detritus o finos contaminantes, se procederá para su eliminación al lavado previo de aquella, secado posterior y tamizado en seco, de acuerdo con la norma UNE EN 933-1.

4.4 Se determina la masa de una cantidad de polvo de talco acorde con la granulometría teórica del material. Para materiales con tamaño máximo superior a 300 \(\mu\text{m}\), se emplean 0,5 g de polvo de talco. Para materiales de hasta 300 \(\mu\text{m}\) de tamaño máximo, se utilizan 1,5 g de polvo de talco.

4.5 Se coloca la porción de muestra para ensayo en un recipiente de unos 500 \(\text{cm}^3\), se añade el polvo de talco prescrito en 4.4 y se mezcla durante 1 min como mínimo, hasta que se hayan deshecho todas las aglomeraciones de partículas y el talco se haya repartido uniformemente.
5. PROCEDIMIENTO

5.1 Tamizado

5.1.1 Se monta una columna de tamizado, formada por los tamices ensamblados y dispuestos, de arriba a abajo, en orden decreciente de tamaños de abertura, con una bandeja de fondo bajo el tamiz inferior. Se disponen dos esferas de goma por tamiz (Nota 4). Se coloca la porción de ensayo seca en el tamiz superior de la columna y se cierra ésta con una tapa.

Nota 4: En el caso de materiales de tamaño máximo de partícula superior a 400 μm, el empleo de esferas es optativo.

5.1.2 Se agita la columna, manual o mecánicamente, durante unos 10 minutos para materiales con tamaño máximo superior a 300 μm, o durante unos 20 minutos para materiales de tamaño máximo inferior a 300 μm.

5.1.3 Se retiran a continuación los tamices uno a uno, comenzando con el de mayor tamaño de abertura y se agita cada tamiz manualmente, asegurándose que no se pierde material con ayuda, por ejemplo, de una bandeja de fondo y de una tapa (Nota 5). Se transfiere todo el material que pasa por cada tamiz al inmediatamente inferior antes de repetir la anterior operación con el siguiente tamiz.

Nota 5: El proceso de tamizado puede considerarse terminado cuando la masa de material retenido no varía en más de 1,0 % tras un minuto de agitación.

5.2 Determinación de las masas de las partículas retenidas en cada tamiz

5.2.1 Con ayuda de un cepillo o pincel, se recoge todo el material retenido en el tamiz de mayor tamaño de abertura. Se determina su masa con aproximación a 0,1 g y se registra como \(R_1 \).

5.2.2 Se realiza sucesivamente la misma operación para el resto de tamices que forman la columna. Se obtienen, con aproximación a 0,1 g, las masas de las diferentes fracciones de material retenidas en cada tamiz y se registran como \(R_2, R_3, ..., R_n \).

5.2.3 Se determina la masa del material tamizado, si lo hubiere, que queda en la bandeja de fondo, con aproximación a 0,1 g, y se registra como \(P \).

Para tener en cuenta la adición de polvo de talco a la muestra, la masa que queda en la bandeja de fondo se ajusta mediante la siguiente expresión:

\[
R = P - (Z - M_1)
\]

donde:

- \(R \) = masa de polvo de caucho en la bandeja de fondo, en gramos.
- \(P \) = masa del residuo tamizado que queda en la bandeja de fondo, en gramos.
- \(Z \) = masa de la suma de los contenidos \(R_i \) retenidos en cada tamiz, más el de la bandeja de fondo, en gramos.
- \(M_1 \) = masa de la porción de ensayo seca, en gramos.

6. CÁLCULOS Y EXPRESIÓN DE LOS RESULTADOS

6.1 Cálculos

6.1.1 Las diferentes masas registradas se anotan en la hoja de resultados del ensayo.

6.1.2 Se expresa la masa retenida en cada tamiz como porcentaje respecto de la masa de la porción original de ensayo seca, \(M_1 \).
6.1.3 Se calcula el porcentaje acumulado, respecto de la masa de la porción original de ensayo seca, que pasa por cada tamiz hasta el tamiz de 63 μm (0,063 mm), excluido éste.

6.1.4 Se calcula el porcentaje de finos \((f)\) de la porción de ensayo que pasa por el tamiz de 63 μm (0,063 mm) según la siguiente expresión:

\[
f = \frac{M_1 - M_f}{M_1} \times 100
\]

donde:
- \(M_1\) = masa de la porción de ensayo seca, en gramos.
- \(M_f\) = masa total acumulada de material retenido en el tamiz de 63 μm (0,063 mm), igual a la suma de las masas \(R_i\), retenidas en cada tamiz, en gramos.

6.2 Validación de los resultados

Si la suma de las masas \(R\) y \(P\) difiere en más del 1% de la suma de \(M_1\) y la masa de polvo de talco añadido, el ensayo debe repetirse.

7. INFORME DEL ENSAYO

7.1 Datos normativos obligatorios

El informe de ensayo deberá incluir la siguiente información:
- la referencia a esta Norma;
- identificación de la muestra;
- identificación del laboratorio;
- fecha de la recepción de la muestra;
- método de ensayo (tamizado en seco o lavado previo y tamizado en seco);
- porcentaje acumulado, respecto de la masa de la porción de ensayo, que pasa por cada uno de los tamices, redondeado a la cifra decimal más próxima para el tamiz de 63 μm (0,063 mm), y al número entero más próximo para los restantes tamices.

7.2 Datos informativos optativos

El informe de ensayo puede incluir la siguiente información:
- nombre y localización del origen de la muestra;
- descripción del material y del método de muestreo;
- representación gráfica de los resultados;
- certificado del muestreo;
- masa de la porción o porciones de ensayo;
- fecha del ensayo.
ANEJO 3

PROPUESTA DE ESPECIFICACIONES DEL BETÚN MODIFICADO DE ALTA VISCOSIDAD CON CAUCHO

1. DEFINICIÓN

Se define como betún modificado de alta viscosidad con caucho el ligante hidrocarbonado resultante de la interacción físico-química de un porcentaje igual o superior al quince por ciento (15%, en peso del ligante combinado) de polvo de caucho, procedente de la trituración de neumáticos fuera de uso, y en su caso de otros aditivos, con un betún asfáltico de los definidos en el artículo 211 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes, PG-3.

Se consideran comprendidos dentro de este artículo los betunes modificados de alta viscosidad con caucho suministrados a granel y los que se fabriquen en el lugar de empleo, en instalaciones específicas para este fin. Quedan excluidos, los obtenidos a partir de adiciones incorporadas a los áridos o en el mezclador de la central de fabricación de la unidad de obra de la que formen parte.

2. CONDICIONES GENERALES

Los betunes modificados de alta viscosidad con caucho deberán presentar un aspecto homogéneo y estar prácticamente exentos de agua, de modo que no formen espuma cuando se calienten a la temperatura de empleo.

A efectos de aplicación de este artículo, la denominación del tipo de betún modificado de alta viscosidad con caucho se compondrá de las letras BMAVC, seguidas de un numero y, en su caso, otra letra minúscula, separados por un guión (-), que indiquen el tipo a que pertenecen, especificándose para su aplicación en carreteras los tipos indicados en la tabla 1.

De acuerdo con su denominación, las características de los betunes modificados de alta viscosidad con caucho deberán cumplir las especificaciones de la tabla 1.

Lo dispuesto en este artículo se entenderá sin perjuicio de lo establecido en el Real Decreto 1630/1992 (modificado por el Real Decreto 1328/1995) por el que se dictan disposiciones para la libre circulación de productos de construcción, en aplicación de la Directiva 89/106/CEE, y en particular, en lo referente a los procedimientos especiales de reconocimiento, se estará a lo establecido en su artículo 9.

La viscosidad del betún modificado de alta viscosidad con caucho deberá ser compatible con que la temperatura de fabricación de la unidad de obra correspondiente sea inferior a ciento noventa grados Celsius (190°C).

3. MATERIALES

3.1 Betún asfáltico base

El betún asfáltico base podrá ser cualquiera de los especificados en el artículo 211 “Betunes asfálticos” del PG-3. Su composición química y especialmente el contenido de maltenos serán adecuados para favorecer la interacción con el polvo de caucho.
3.2 Polvo de caucho

Cumplirá las especificaciones del artículo “Polvo de caucho para materiales bituminosos” (véase el Anejo 2 de este Manual).

La granulometría del polvo de caucho estará comprendida dentro de los husos granulométricos denominados P-2 o P-3, definidos en dicho artículo.

3.3 Aditivos

Los aditivos que se vayan a utilizar deberán ser especificados en la fórmula de trabajo y aprobados por el Director de las Obras. Únicamente se autorizará el uso de los aditivos cuyas características y especialmente su comportamiento y los efectos sobre la mezcla al emplearlos en las proporciones previstas, vengan garantizados por el fabricante, siendo obligatorio realizar los ensayos previos necesarios para comprobar que cumplen su función con los materiales y dosificaciones previstas en la fórmula de trabajo.

4. DOSIFICACIÓN DEL BETÚN MODIFICADO DE ALTA VISCOSIDAD CON CAUCHO

El contenido de caucho en el ligante modificado será superior al quince por ciento (15%) sobre peso del betún modificado de alta viscosidad con caucho resultante. Las desviaciones sobre el contenido de polvo de caucho definido en la fórmula de trabajo no serán superiores al uno por ciento (1%).

5. FABRICACIÓN EN EL LUGAR DE EMPLEO

El betún de alta viscosidad modificado con caucho se podrá fabricar en una instalación de betunes modificados o en equipos específicos situados en la central de fabricación de mezclas bituminosas, entre el depósito de betún y el mezclador, y lo más cerca posible de éste para minimizar la longitud de las tuberías de alimentación a calofugar o aislar.

La fabricación en el lugar de empleo no se iniciará hasta que se haya aprobado por el Director de las Obras la correspondiente fórmula de trabajo, estudiada en laboratorio y verificada en la central de fabricación de betunes. Además de la fórmula de trabajo, se incluirán los datos relativos a las variaciones de las características del betún de alta viscosidad con el tiempo, la temperatura de mezclado y el contenido de polvo de caucho.

Dicha fórmula fijará como mínimo las siguientes características:

- la identificación y proporción del polvo de caucho en la alimentación,
- el tipo y características del ligante bituminoso,
- en su caso, el tipo y dotación de los aditivos, referida a la masa del ligante combinado,
- la temperatura del ligante bituminoso en la alimentación,
- los tiempos y temperaturas a exigir para la mezcla de los componentes,
- la temperatura máxima y mínima del ligante a la salida de la instalación de mezcla,
- las características del ligante fabricado, incluyendo las relaciones entre la viscosidad, el tiempo y la temperatura de mezclado, y
- el tiempo máximo de almacenamiento del ligante a la temperatura de fabricación.

Para la fabricación del betún de alta viscosidad modificado con caucho en la central de fabricación de mezclas bituminosas se dispondrá de una unidad para la mezcla del betún con el polvo de caucho. El fabricante deberá facilitar un procedimiento operatorio, que deberá ser aprobado, junto con los equipos de mezcla correspondientes, por el Director de las Obras antes de dar comienzo a la ejecución. Los equipos de mezcla dispondrán como mínimo de los siguientes dispositivos.

- Sistema de alimentación de caucho, que permitirá su dosificación con una tolerancia de un cinco por mil (±0,5%) sobre el peso del ligante producido.
- Tanque de almacenamiento del betún modificado con caucho fabricado, provisto de:
- un sistema calefactor que permita el control de la temperatura del ligante y un termómetro en lugar fácilmente accesible,
- un sistema de agitación que evite sedimentaciones o la flotación del caucho, así como de los eventuales aditivos y facilite la dispersión del polvo,
- un sistema de medida de la viscosidad, para detectar los cambios que se produzcan en el ligante durante su almacenamiento en el tanque,
- un sistema de toma de muestras, fácilmente accesible.

Todos los tanques de la instalación, o los de almacenamiento en su caso, estarán adecuadamente aislados entre sí y deberán estar provistos de bocas de ventilación para evitar que trabajen a presión, y contarán con los aparatos de medida y seguridad necesarios, situados en puntos de fácil acceso.

Los tanques deberán ser calorífugos y estar provistos de termómetros situados en puntos bien visibles y dotados de su propio sistema de calefacción, capaz de evitar que, por cualquier anomalía, la temperatura del producto se desvíe de la fijada para el almacenamiento en más de diez grados Celsius (10ºC). Asimismo, dispondrán de un dispositivo apropiado para la toma de muestras.

Todas las tuberías y bombas utilizadas para el trasiego del betún modificado de alta viscosidad con caucho deberán estar calefactadas, aisladas térmicamente y dispuestas de modo que se puedan limpiar fácilmente después de cada aplicación y/o jornada de trabajo.

El tiempo máximo de almacenamiento del betún modificado de alta viscosidad con caucho a temperaturas iguales o superiores a 160ºC será de 4 h. A partir de ese tiempo de almacenamiento se reducirá la temperatura al menos en 30ºC. El número de ciclos de calentamiento-enfriamiento no debe ser superior a 2 para una partida determinada.

El Pliego de Prescripciones Técnicas Particulares establecerá las medidas a tomar para el cumplimiento de la legislación vigente en materia medioambiental, de seguridad laboral, almacenamiento y transporte.

El Director de las Obras comprobará, con la frecuencia que crea necesaria, los sistemas de trasiego y las condiciones de almacenamiento, en todo cuanto pueda afectar a la calidad del material; y, de no ser de su conformidad, suspenderá la utilización del contenido del tanque o cisterna correspondiente hasta la comprobación de las características que estime conveniente, de entre las indicadas en la tabla 1.

6. TRANSPORTE Y ALMACENAMIENTO DEL BETÚN MODIFICADO DE ALTA VISCOSIDAD CON CAUCHO FABRICADO EN CENTRAL DE BETÚNES

Cuando no se fabrique en el lugar de empleo, el betún modificado de alta viscosidad con caucho será transportado en cisternas calorífugas y provistas de termómetros situados en puntos bien visibles. Las cisternas deberán estar preparadas para poder calentar el betún asfáltico cuando, por cualquier anomalía, la temperatura de éste disminuya excesivamente para impedir su trasiego. Asimismo, dispondrán de un elemento adecuado para la toma de muestras.

Cuando los tanques de almacenamiento no dispongan de medios de carga propios las cisternas empleadas para el transporte de betún modificado de alta viscosidad con caucho estarán dotadas de medios mecánicos para el trasiego rápido de su contenido a los mismos. Cuando se empleen bombas de trasiego serán preferibles las de tipo rotativo a las centrífugas.

El trasiego desde las cisternas de transporte a los tanques de almacenamiento se realizará siempre por tubería directa.

7. RECEPCIÓN E IDENTIFICACIÓN

Si el betún modificado de alta viscosidad con caucho no se fabrica en el lugar de empleo, cada cisterna de betún modificado de alta viscosidad con caucho que llegue a obra irá acompañada de un albarán, una hoja
de características con los resultados de los análisis y ensayos correspondientes a la producción a la que pertenezca la cisterna suministrada y un certificado de garantía de calidad que exprese el cumplimiento de las especificaciones exigidas al tipo de betún modificado de alta viscosidad con caucho suministrado, de acuerdo con la tabla 1.

Si el fabricante tuviera para este producto certificado acreditativo del cumplimiento de las especificaciones obligatorias de este artículo y/o documento acreditativo de la homologación de la marca, sello o distintivo de calidad, según lo indicado en el apartado 8 del presente artículo, y lo hiciera constar en el albarán, no precisará acompañar el certificado de garantía de calidad.

El albarán contendrá explícitamente los siguientes datos:

- Nombre y dirección de la empresa suministradora.
- Fecha de fabricación y de suministro.
- Identificación del vehículo que lo transporta.
- Cantidad que se suministra.
- Denominación comercial, si la hubiese, y tipo de betún modificado de alta viscosidad con caucho suministrado, de acuerdo con la denominación especificada en el presente artículo.
- Nombre y dirección del comprador y del destino.
- Referencia del pedido.
- En su caso, certificado acreditativo del cumplimiento de las especificaciones obligatorias de este artículo y/o documento acreditativo de la homologación de la marca, sello o distintivo de calidad, según lo indicado en el apartado 8 del presente artículo.

Para la producción diaria de los betunes fabricados en el lugar de empleo y para cada partida de los que se suministren en cisterna, se facilitará una hoja de características que contendrá explícitamente, al menos:

- Referencia del albarán de la cisterna, o día de fabricación en su caso.
- Denominación comercial, si la hubiese, y tipo de betún modificado de alta viscosidad con caucho suministrado o fabricado, de acuerdo con la denominación especificada en el presente artículo.
- Declaración del contenido de polvo de caucho.
- Los datos referentes al polvo de caucho que se señalan en el artículo correspondiente.
- Valores de penetración a veinticinco grados Celsius (25ºC), según la norma NLT-124, punto de reblanquecimiento (anillo y bola), según la norma NLT-125, y recuperación elástica, según la norma NLT-329.
- Temperaturas máxima y mínima de transporte.

A juicio del Director de las Obras se podrán exigir, además, los siguientes datos:

- La curva de densidad relativa en función de la temperatura.
- La temperatura recomendada para el mezclado.
- La temperatura máxima de calentamiento.
- Los valores del resto de las características especificadas en la tabla 1, que deberán ser aportados por el suministrador en un plazo no superior a siete (7) días.

8. CONTROL DE CALIDAD

Si con el producto se aportara certificado acreditativo del cumplimiento de las especificaciones obligatorias de este artículo y/o documento acreditativo de la homologación de la marca, sello o distintivo de calidad del producto, según lo indicado en el apartado 8 del presente artículo, los criterios descritos a continuación para realizar el control de recepción de las cisternas o del betún modificado con polímeros fabricado en obra, no serán de aplicación obligatoria, sin perjuicio de las facultades que corresponden al Director de las Obras.
8.1 Control de recepción

8.1.1 Suministro en cisternas

De cada cisterna de betún modificado de alta viscosidad con caucho que llegue a la obra se tomarán dos (2) muestras de, al menos, un kilogramo (1 kg), según la NLT-121, en el momento del trasvase del material de la cisterna al tanque de almacenamiento.

Sobre una de las muestras se realizarán los siguientes ensayos:

- Determinación de la penetración, según la NLT-124
- Punto de reblandecimiento, según la NLT-125
- Recuperación elástica, según la NLT-329
- Viscosidad a 175°C, según la NLT-375

Y la otra se conservará hasta el final del período de garantía.

En cualquier caso, el Pliego de Prescripciones Técnicas Particulares o el Director de las Obras podrán fijar otro criterio para el control de recepción de las cisternas.

8.1.2 Fabricación en obra

8.1.2.1 Control del betún asfáltico base

Si el betún modificado de alta viscosidad con caucho se fabricase en el lugar de empleo el control del betún asfáltico base se realizará de acuerdo con el artículo 211 del PG-3.

8.1.2.2 Control del polvo de caucho

Si el betún modificado de alta viscosidad con caucho se fabricase en la central de fabricación de mezclas bituminosas el control del polvo de caucho se hará de acuerdo con las especificaciones del artículo “Polvo de caucho para materiales bituminosos” (véase el Anexo 2 de este Manual).

8.1.2.3 Control del betún modificado de alta viscosidad con caucho

En el caso de los betunes modificados de alta viscosidad con caucho fabricados en el lugar de empleo, se tomarán dos (2) muestras cada cincuenta toneladas (50 t) de producto fabricado y, al menos, dos (2) cada jornada de trabajo de las tuberías de salida de la instalación de fabricación del betún modificado de alta viscosidad con caucho, conservando una (1) muestra hasta el final del período de garantía, y realizando sobre las otras los siguientes ensayos:

- Determinación de la penetración, según la NLT-124
- Punto de reblandecimiento, según la NLT-125
- Recuperación elástica, según la NLT-329
- Viscosidad a 175°C, según la NLT-375

8.2 Control a la entrada del mezclador

Se considerará como lote, que se aceptará o rechazará, de acuerdo con lo dispuesto en el apartado 9 del presente artículo, en bloque, a la cantidad de cien toneladas (100 t) o fracción diaria de betún modificado de alta viscosidad con caucho. En cualquier caso, el Pliego de Prescripciones Técnicas Particulares o el Director de las Obras podrán fijar otro tamaño de lote.

De cada lote, se tomarán dos (2) muestras de, al menos, cuatro kilogramos (4 kg), según la NLT-121, en algún punto situado entre la salida del tanque de almacenamiento y la entrada del mezclador. Sobre una de las muestras se realizarán los siguientes ensayos:

- Determinación de la penetración, según la NLT-124
- Punto de reblandecimiento, según la NLT-125
Recuperación elástica, según la NLT-329
Viscosidad a 175°C, según la NLT-375

Y la otra se conservará hasta el final del período de garantía.

8.3 Control adicional

Una (1) vez cada mes y como mínimo tres (3) veces, durante la ejecución de la obra, por cada tipo y composición de betún modificado de alta viscosidad con caucho, y cuando lo especifique el Pliego de Prescripciones Técnicas Particulares, se realizarán los ensayos necesarios para la comprobación de las características especificadas en la tabla 1.

Si el betún modificado de alta viscosidad con caucho hubiese estado almacenado en condiciones normales, durante un plazo superior a cinco (5) días, antes de su empleo, se realizarán, como mínimo, sobre dos (2) muestras, una de la parte superior y otra de la inferior del depósito de almacenamiento, los ensayos de penetración, según la norma NLT-124, y punto de reblandecimiento, según la norma NLT-125 que, comparados con los resultados de los ensayos a la llegada a obra, deberán cumplir las especificaciones de estabilidad de la tabla 1. Si no cumpliera lo establecido para estas características, se procederá a su homogeneización y realización de nuevos ensayos, o a su retirada. En condiciones atmosféricas desfavorables o de obra anormales, el Director de las Obras podrá disminuir el plazo de cinco (5) días, anteriormente indicado, para la comprobación de las condiciones de almacenamiento del betún modificado de alta viscosidad con caucho.

Además de lo anteriormente establecido, cuando el Director de las Obras lo considere conveniente, se llevarán a cabo los ensayos necesarios para la comprobación de las características que estime necesarias, de las especificadas en la tabla 1.

Para los betunes modificados de alta viscosidad con caucho que dispongan de una hoja de ensayos suscrita por un laboratorio dependiente del Ministerio de Fomento o un laboratorio acreditado por él, o por otro laboratorio de ensayos u organismo de control o certificación acreditado en un Estado Miembro de la Unión Europea o que sea parte del Acuerdo sobre el Espacio Económico Europeo sobre la base de las prescripciones técnicas correspondientes, se tendrán en cuenta los resultados de los ensayos que se hayan realizado en el correspondiente Estado miembro y no se repetirán innecesariamente los mismos ensayos. Para ello, los laboratorios en cuestión deberán ofrecer unas garantías razonables y satisfactorias en cuanto a su cualificación técnica y profesional y a su independencia (por ejemplo, según la EN 17025). No obstante lo anterior, la presentación de dicha hoja de ensayos no afectará en ningún caso a la realización ineludible de los ensayos de penetración, punto de reblandecimiento y recuperación elástica.

9. CRITERIOS DE ACEPTACIÓN O RECHAZO

El Director de las Obras indicará las medidas a adoptar en el caso de que el betún modificado de alta viscosidad con caucho no cumpla alguna de las especificaciones establecidas en la tabla 1 de este artículo.

10. MEDICIÓN Y ABONO

La medición y abono del betún modificado de alta viscosidad con caucho se realizará según lo indicado en el Pliego de Prescripciones Técnicas Particulares para la unidad de obra de la que forme parte.

En acopios, el betún modificado de alta viscosidad con caucho se abonará por toneladas (t) realmente acopiadas.

11. ESPECIFICACIONES TÉCNICAS Y DISTINTIVOS DE CALIDAD

El cumplimiento de las especificaciones técnicas obligatorias requeridas a los productos contemplados en el presente artículo, se podrá acreditar por medio del correspondiente certificado que, cuando dichas especificaciones estén establecidas exclusivamente por referencia a normas, podrá estar constituido por un certificado de conformidad a dichas normas.
Si los referidos productos, disponen de una marca, sello o distintivo de calidad que asegure el cumplimiento de las especificaciones obligatorias de este artículo, se reconocerá como tal cuando dicho distintivo esté homologado por la Dirección General de Carreteras del Ministerio de Fomento.

El certificado acreditativo del cumplimiento de las especificaciones obligatorias de este artículo podrá ser otorgado por las Administraciones Publicas competentes en materia de carreteras, la Dirección General de Carreteras del Ministerio de Fomento (según ámbito) o los Organismos españoles -públicos y privados- autorizados para realizar tareas de certificación y/o ensayos en el ámbito de los materiales, sistemas y procesos industriales, conforme al Real Decreto 2200/1995, de 28 de diciembre.

<table>
<thead>
<tr>
<th>Tabla 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones de betunes modificados de alta viscosidad con caucho</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>UNIDAD</th>
<th>NORMA</th>
<th>BMAVC-1 mín.</th>
<th>BMAVC-1 máx.</th>
<th>BMAVC-2 mín.</th>
<th>BMAVC-2 máx.</th>
<th>BMAVC-3 mín.</th>
<th>BMAVC-3 máx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETÚN ORIGINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENETRACIÓN (25ºC; 100g; 5s)</td>
<td>0,1 mm</td>
<td>NLT 124</td>
<td>15</td>
<td>30</td>
<td>35</td>
<td>50</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>PUNTO DE REBLANDECIMIENTO (Anillo y Bola)</td>
<td>ºC</td>
<td>NLT 125</td>
<td>75</td>
<td>70</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISCOSIDAD</td>
<td>mPa.s</td>
<td>NLT 375</td>
<td>-</td>
<td>-</td>
<td>7500</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUNTO DE FRAGILIDAD FRAASS</td>
<td>ºC</td>
<td>NLT 182</td>
<td>2000</td>
<td>-</td>
<td>1200</td>
<td>-</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>FUERZA- DUCTILIDAD(5cm/min)</td>
<td>J/cm²</td>
<td>UNE EN 13589</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNE EN 13703</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSISTENCIA (Flotador a 60ºC)</td>
<td>s</td>
<td>NLT 183</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTABILIDAD AL ALMACENAMIENTO*</td>
<td>ºC</td>
<td>NLT 328</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferencia Punto Reblandecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferencia Penetración (25ºC)</td>
<td>0,1 mm</td>
<td>NLT 123</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECUPERACIÓN ELÁSTICA 25ºC</td>
<td>%</td>
<td>NLT 329</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTENIDO EN AGUA (en volumen)</td>
<td>%</td>
<td>NLT 123</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUNTO DE INFLAMACIÓN</td>
<td>ºC</td>
<td>NLT 127</td>
<td>235</td>
<td>235</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSIDAD RELATIVA (25ºC/25ºC)</td>
<td></td>
<td>NLT 122</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESIDUO DESPUÉS DE PELÍCULA FINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIACIÓN DE MASSA</td>
<td>%</td>
<td>NLT 185</td>
<td>0,8</td>
<td>0,8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENETRACIÓN (25ºC; 100g; 5s)</td>
<td>% p.o.</td>
<td>NLT 124</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIACIÓN DEL PUNTO DE REBLANDECIMIENTO ANILLO Y BOLA</td>
<td>ºC</td>
<td>NLT 125</td>
<td>-4</td>
<td>+10</td>
<td>-4</td>
<td>+10</td>
<td>-5</td>
<td>+12</td>
</tr>
</tbody>
</table>

(*) No se exigirá esta prescripción cuando el betún modificado de alta viscosidad con caucho se fabrique en el lugar de empleo.
NORMAS REFERENCIADAS

<table>
<thead>
<tr>
<th>NLT-121</th>
<th>Toma de muestras de los materiales bituminosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLT-122</td>
<td>Densidad y densidad relativa de los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-123</td>
<td>Agua en los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-124</td>
<td>Penetración de los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-125</td>
<td>Punto de reblandecimiento anillo y bola de los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-126</td>
<td>Ductilidad de los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-127</td>
<td>Puntos de inflamación y combustión de los materiales bituminosos (aparato Cleveland, vaso abierto)</td>
</tr>
<tr>
<td>NLT-130</td>
<td>Solubilidad de los materiales bituminosos en disolventes orgánicos</td>
</tr>
<tr>
<td>NLT-182</td>
<td>Punto de fragilidad Fraass de los materiales bituminosos</td>
</tr>
<tr>
<td>NLT-183</td>
<td>Consistencia de los materiales bituminosos mediante el flotador</td>
</tr>
<tr>
<td>NLT-185</td>
<td>Efecto del calor y del aire sobre los materiales bituminosos en película fina</td>
</tr>
<tr>
<td>NLT-328</td>
<td>Estabilidad al almacenamiento de betunes asfálticos modificados</td>
</tr>
<tr>
<td>NLT-329</td>
<td>Recuperación elástica por torsión de betunes asfálticos modificados alto</td>
</tr>
</tbody>
</table>
BETUNES MEJORADOS CON POLVO DE CAUCHO

Se define el betún mejorado con polvo de caucho como aquel ligante hidrocarbonado resultante de la interacción físico-química de betún asfáltico, polvo de caucho procedente de neumáticos fuera de uso y, en su caso, aditivos, que no cumple las especificaciones de los betunes modificados del artículo 215 del PG-3, pero sí las especificaciones establecidas en la tabla que figura a continuación. Los betunes mejorados con polvo de caucho se denominarán con las letras BC, seguidas de los números correspondientes al intervalo de penetración al que correspondan. El contenido de polvo de caucho de estos betunes suele ser superior al 8% e inferior al 12% en peso de la mezcla total.

Especificaciones de los betunes mejorados con caucho

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>UNIDAD</th>
<th>NORMA</th>
<th>BC 35/50</th>
<th>BC 50/70</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETÚN ORIGINAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENETRACIÓN (25ºC; 100g; 5S)</td>
<td>0,1 mm</td>
<td>NLT 124</td>
<td>35-50</td>
<td>50-70</td>
</tr>
<tr>
<td>PUNTO DE REBLANDECIMIENTO ANILLO Y BOLA</td>
<td>ºC</td>
<td>NLT 125</td>
<td>≥ 58</td>
<td>≥ 53</td>
</tr>
<tr>
<td>PUNTO DE FRAGILIDAD FRAASS</td>
<td>ºC</td>
<td>NLT 182</td>
<td>≤ -5</td>
<td>≤ -8</td>
</tr>
<tr>
<td>FUERZA DUCTILIDAD (5 cm/min)</td>
<td>J/cm²</td>
<td>UNE EN 13589</td>
<td>≥ 0,5</td>
<td></td>
</tr>
<tr>
<td>PUNTO DE FRAGILIDAD FRAASS</td>
<td></td>
<td>UNE EN 13703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTABILIDAD AL ALMACENAMIENTO*</td>
<td>ºC</td>
<td>NLT 328</td>
<td>≤ 10</td>
<td></td>
</tr>
<tr>
<td>Diferencia Punto Reblandecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diferencia Penetración (25ºC)</td>
<td>0,1 mm</td>
<td></td>
<td>≤ 8</td>
<td>≤ 10</td>
</tr>
<tr>
<td>RECUPERACIÓN ELÁSTICA</td>
<td>25ºC</td>
<td>%</td>
<td>NLT 329</td>
<td>≥ 10</td>
</tr>
<tr>
<td>SOLUBILIDAD</td>
<td>%</td>
<td>UNE EN 12592</td>
<td>≥ 92</td>
<td></td>
</tr>
<tr>
<td>PUNTO DE INFLAMACIÓN</td>
<td>ºC</td>
<td>NLT 127</td>
<td>≥ 235</td>
<td></td>
</tr>
<tr>
<td>ENSIDAD RELATIVA (25ºC/25ºC)</td>
<td></td>
<td>NLT 122</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>RESIDUO DEL ENSAYO DE PELÍCULA FINA Y ROTATORIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIACIÓN DE MASA</td>
<td>%</td>
<td>NLT 185</td>
<td>≤ 1,0</td>
<td></td>
</tr>
<tr>
<td>PENETRACIÓN (25ºC; 100g; 5s)</td>
<td>% p.o.</td>
<td>NLT 124</td>
<td>≥ 65</td>
<td>≥ 60</td>
</tr>
<tr>
<td>VARIACIÓN DEL PUNTO DE REBLANDECIMIENTO ANILLO Y BOLA</td>
<td>ºC</td>
<td>NLT 125</td>
<td>min −4 máx +8</td>
<td>min −5 máx +10</td>
</tr>
</tbody>
</table>

(*) No se exigirá esta prescripción cuando el betún con polvo de caucho se fabrique en el lugar de empleo.
BETUNES MODIFICADOS CON POLVO DE CAUCHO

Se define el betún modificado con polvo de caucho como aquel ligante hidrocarbonado resultante de la interacción físico-química de betún asfáltico, polvo de caucho procedente de neumáticos fuera de uso y, en su caso, aditivos, que cumple las especificaciones establecidas en el artículo 215 del PG-3 “Betunes asfálticos modificados con polímeros”. El contenido de polvo de caucho suele ser superior al 12% e inferior al 15% en peso de la mezcla total.

La denominación de los betunes modificados con polvo de caucho se compondrá de las letras BMC, seguidas del número correspondiente al tipo al que correspondan.

En el caso de betunes fabricados en el lugar de empleo, serán también de aplicación los apartados específicos relativos a los BMAVC fabricados en obra del Anejo 3 de este Manual, correspondiente a los betunes de alta viscosidad modificados con caucho.
ANEJO 5

PROPUESTA DE ESPECIFICACIONES DE LAS MEZCLAS BITUMINOSAS EN CALIENTE MODIFICADAS CON POLVO DE CAUCHO (PROCEDIMIENTO POR VÍA SECA)

1. DEFINICIÓN

Se define como mezcla bituminosa en caliente modificada con polvo de caucho la que resulte de la combinación de un ligante hidrocarbonado, áridos (incluido el polvo mineral), polvo de caucho y, eventualmente, aditivos, de manera que todas las partículas del árido queden recubiertas por una película homogénea de ligante. Su proceso de fabricación implica calentar el ligante y los áridos (excepto, eventualmente, el polvo mineral de aportación y el polvo de caucho) y su puesta en obra debe realizarse a una temperatura muy superior a la ambiente.

Las mezclas bituminosas en caliente modificadas con polvo de caucho serán de aplicación en capas de rodadura e intermedia. Se podrán fabricar con polvo de caucho cualquiera de las mezclas bituminosas previstas para estas capas en los artículos 542 y 543 del PG-3.

2. MATERIALES

2.1 Ligante hidrocarbonado

El Pliego de Prescripciones Técnicas Particulares fijará el tipo de ligante hidrocarbonado a emplear, que será seleccionado, en función de la capa a que se destine la mezcla bituminosa en caliente, de la zona térmica estival en que se encuentre y de la categoría de tráfico pesado, definidas en la Norma 6.1 IC de secciones de firme o en la Norma 6.3 IC de rehabilitación de firmes, entre los que se indican en la tabla 1 y, salvo justificación en contrario, deberá cumplir las especificaciones de los correspondientes artículos del PG-3.

<table>
<thead>
<tr>
<th>ZONA TÉRMINA ESTIVAL</th>
<th>CATEGORÍA DE TRÁFICO PESADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>CALIDA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B40/50</td>
</tr>
<tr>
<td></td>
<td>B60/70</td>
</tr>
<tr>
<td></td>
<td>BM-2</td>
</tr>
<tr>
<td></td>
<td>BM-3c</td>
</tr>
<tr>
<td>MEDIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B60/70</td>
</tr>
<tr>
<td></td>
<td>BM-3b</td>
</tr>
<tr>
<td>TEMPLADA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B60/70</td>
</tr>
<tr>
<td></td>
<td>B80/100</td>
</tr>
</tbody>
</table>

Tabla 1
Tipo de ligante hidrocarbonado a emplear (Artículos 211 y 215 del PG-3)
Según lo dispuesto en el apartado 2.3.f) del Plan Nacional de Neumáticos Fuera de Uso, aprobado por Acuerdo del Consejo de Ministros de 5 de octubre de 2001, en las obras en las que la utilización del producto resultante de la trituración de los neumáticos fuera de uso sea técnica y económicamente viable se dará prioridad a éstos.

2.2 Áridos

Los áridos a emplear en las mezclas bituminosas cumplirán las especificaciones requeridas para el tipo de mezcla a fabricar y para la capa a que se destine según los artículos 542.2.2 y 543.2.2 del PG-3.

2.3 Polvo de caucho

El polvo de caucho cumplirá las especificaciones incluidas en el artículo “Polvo de caucho para materiales bituminosos” (véase el Anejo 2 de este Manual).

La granulometría del polvo de caucho estará comprendida dentro de los husos granulométricos denominados P-2 o P-3 definidos en el apartado 3 de dicho artículo.

3. TIPO Y COMPOSICIÓN DE LA MEZCLA

Cuando la dotación de polvo de caucho sea igual o inferior al 0,5% en peso de la mezcla bituminosa no será necesario tenerlo en cuenta para la elaboración de la granulometría conjunta de áridos. Para porcentajes superiores de polvo de caucho se deberá determinar la curva combinada de áridos y polvo de caucho, que deberá estar comprendida dentro de alguno de los husos granulométricos correspondientes a las mezclas de tipo denso, semidenso, drenante y discontinuas de los artículos 542 ó 543 del PG-3. En la elaboración de la curva granulométrica combinada se tendrán en cuenta las diferencias de densidad relativa entre el árido y el polvo de caucho.

El Pliego de Prescripciones Técnicas Particulares fijará la dotación mínima de ligante hidrocarbonado de la mezcla bituminosa en caliente que, en cualquier caso, deberá cumplir lo indicado en la tabla 2, según el tipo de mezcla o de capa.

<table>
<thead>
<tr>
<th>TIPO DE CAPA</th>
<th>TIPO DE MEZCLA</th>
<th>DOTACION MINIMA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RODADURA</td>
<td>DISCONTINUA F</td>
<td>5,75</td>
</tr>
<tr>
<td></td>
<td>DISCONTINUA M</td>
<td>5,25</td>
</tr>
<tr>
<td></td>
<td>DRENAANTE</td>
<td>4,75</td>
</tr>
<tr>
<td></td>
<td>Densa y Semidensa</td>
<td>5,0</td>
</tr>
<tr>
<td>INTERMEDIA</td>
<td>Densa y Semidensa</td>
<td>4,25</td>
</tr>
</tbody>
</table>

(*) Incluidas las tolerancias especificadas en el apartado 9.3.1. Se tendrán en cuenta las correcciones por densidad relativa y absorción de los áridos, si son necesarias.
4. EQUIPO NECESARIO PARA LA EJECUCIÓN DE LAS OBRAS

4.1 Central de fabricación

Las mezclas bituminosas en caliente modificadas con polvo de caucho se fabricarán por medio de centrales de mezcla discontinua o continuas de doble tambor. Los requisitos exigidos en el artículo 542.4.1 a este tipo de centrales serán igualmente de aplicación para las mezclas con polvo de caucho.

Además, cuando las mezclas se extiendan en carreteras con tráficos T3 y superiores, las centrales deberán estar provistas de dosificadores ponderales para el polvo de caucho, cuya precisión sea superior al tres por mil (± 0,3%). En carreteras de baja intensidad de tráfico, la incorporación del caucho se hará manualmente en sacos de polietileno de baja densidad.

La central deberá disponer de al menos una tolva de almacenamiento de las mezclas bituminosas fabricadas, con una capacidad tal que garantice el flujo normal de los elementos de transporte. Las mezclas bituminosas con polvo de caucho no se podrán almacenar por períodos superiores a 12 h salvo autorización expresa del Director de las Obras.

4.2 Elementos de transporte

Los camiones deberán siempre estar provistos de una lona o cobertor adecuado para proteger la mezcla bituminosa en caliente durante su transporte.

4.3 Extendedoras

Las extendedoras serán autopropulsadas y estarán dotados de los dispositivos necesarios para extender la mezcla bituminosa en caliente con la configuración deseada y un mínimo de precompactación, que deberá ser fijado por el Director de las Obras. La capacidad de sus elementos, así como su potencia, serán adecuadas al trabajo a realizar.

La extendedora deberá estar dotada de un dispositivo automático de nivelación, y de un elemento calefactor para la ejecución de la junta longitudinal.

Se comprobará, en su caso, que los ajustes del enrasador y de la maestra se atienen a las tolerancias mecánicas especificadas por el fabricante, y que dichos ajustes no han sido afectados por el desgaste, u otras causas.

La anchura extendida y compactada será siempre igual o superior a la teórica, y comprenderá las anchuras teóricas de la calzada o arcenes más los sobreanchos mínimos fijados en los Planos. Si a la extendedora se pueden acoplar elementos para aumentar su anchura, éstos deberán quedar perfectamente alineados con los de aquel y conseguir una mezcla continua y uniforme.

4.4 Equipo de compactación

Las presiones de contacto, estáticas o dinámicas, de los diversos tipos de compactadores serán aprobadas por el Director de las Obras, y serán las necesarias para conseguir una compacidad adecuada y homogénea de la mezcla en todo su espesor, sin producir roturas del árido, ni arrollamientos de la mezcla a la temperatura de compactación.

En los lugares inaccesibles para los equipos de compactación normales, se emplearán otros de tamaño y diseño adecuados para la labor que se pretende realizar y siempre deberán ser autorizados por el Director de las Obras.
5. EJECUCIÓN DE LAS OBRAS

5.1 Estudio de la mezcla y obtención de la fórmula de trabajo

La fabricación y puesta en obra de la mezcla no se iniciará hasta que se haya aprobado por el Director de las Obras la correspondiente fórmula de trabajo, estudiada en laboratorio y verificada en la central de fabricación. Además de la fórmula de trabajo, se incluirán los datos relativos a las variaciones de las características de la mezcla con el tiempo y la temperatura de mezclado. También se indicarán las variaciones de las características de la mezcla con contenidos de betún de ±0,3%.

La fórmula de trabajo, además de lo indicado en los artículos 542.5.1 y 543.5.1 del PG-3, fijará el tiempo mínimo que debe transcurrir entre la fabricación de la mezcla y la puesta en obra, que no será inferior en ningún caso a 30 min. El tiempo de amasado se deberá aumentar, respecto al de una mezcla convencional, para garantizar el mezclado homogéneo del polvo de caucho con los áridos y la envuelta con el betún.

El Pliego de Prescripciones Técnicas Particulares, o en su defecto el Director de las Obras, fijará la dosificación de ligante hidrocarbonado teniendo en cuenta los materiales disponibles, y siguiendo los criterios establecidos en los artículos 542.5.1 y 543.5.1.

En mezclas densas, semidensas y discontinuas tipo F, el ensayo de pista de laboratorio deberá cumplir las especificaciones también para contenidos de ligante un 0,3% superiores a los de la fórmula de trabajo. Independientemente de la zona térmica de la obra, se exigirán velocidades máximas de deformación en el intervalo de 105 a 120 minutos de 12 µm/min.

En mezclas drenantes los valores recomendados para las exigencias de pérdida máxima en el ensayo cántabro en seco y tras inmersión son de 20% y 35% respectivamente y en las mezclas discontinuas de tipo M estos parámetros deberán ser inferiores al 15% y 25%.

La temperatura máxima de la mezcla al salir del mezclador no será inferior a ciento setenta grados Celsius (170°C) ni superior a ciento noventa grados Celsius (190°C). Para las mezclas drenantes y discontinuas tipo M dicha temperatura máxima deberá disminuirse en diez grados Celsius (10°C), para evitar posibles escurrimientos del ligante. En todos los casos, la temperatura mínima de la mezcla al salir del mezclador será aprobada por el Director de las Obras, de forma que la temperatura de la mezcla en la descarga de los camiones sea superior al mínimo fijado.

5.2 Fabricación de la mezcla

Después de haber introducido los áridos y el polvo mineral se agregará el polvo de caucho y se procederá a una primera homogenización durante un tiempo no inferior a 5 segundos. A continuación se introducirá el ligante hidrocarbonado para cada amasada, y se continuará la operación de mezcla durante el tiempo especificado en la fórmula de trabajo.

5.3 Compactación de la mezcla

La compactación se realizará según el plan aprobado por el Director de las Obras en función de los resultados del tramo de prueba; se deberá hacer a la mayor temperatura posible, sin rebasar la máxima prescrita en la fórmula de trabajo y sin que se produzca desplazamiento de la mezcla extendida. Se continuará la compactación hasta que la mezcla se encuentre a una temperatura por debajo de los cien grados Celsius (100°C).

5.4 Juntas transversales y longitudinales

Al extender franjas longitudinales contiguas, si la temperatura de la extendida en primer lugar no fuera superior al mínimo fijado en la fórmula de trabajo para terminar la compactación, el borde de esta franja se cortará verticalmente, dejando al descubierto una superficie plana y vertical en todo su espesor. Salvo en mezclas drenantes, se le aplicará una capa uniforme y ligera de riego de adherencia, según el artículo 531.
de este Pliego, dejando romper la emulsión suficientemente. A continuación, se calentará la junta y se extenderá la siguiente franja contra ella.

6. TRAMO DE PRUEBA

Antes de iniciarse la puesta en obra de cada tipo de mezcla bituminosa en caliente será preceptiva la realización del correspondiente tramo de prueba, para comprobar la fórmula de trabajo, la forma de actuación de los equipos de extensión y compactación, y, especialmente, el plan de compactación.

El tramo de prueba tendrá una longitud no inferior a la definida en el Pliego de Prescripciones Técnicas Particulares. El Director de las Obras determinará si es aceptable su realización como parte integrante de la obra en construcción.

A la vista de los resultados obtenidos, el Director de las Obras definirá:

- Si es aceptable o no la fórmula del trabajo. En el primer caso, se podrá iniciar la fabricación de la mezcla bituminosa. En el segundo, deberá proponer las actuaciones a seguir (estudio de una nueva fórmula, corrección parcial de la ensayada, correcciones en la central de fabricación o sistemas de extendido, etc.).

- Si son aceptables o no los equipos propuestos por el Contratista. En el primer caso, definirá su forma específica de actuación. En el segundo caso, el Contratista deberá proponer nuevos equipos, o incorporar equipos suplementarios.

Asimismo, durante la ejecución del tramo de prueba se analizará la correspondencia, en su caso, entre los métodos de control de la dosificación del ligante hidrocarbonado y de la densidad in situ establecidos en los Pliegos de Prescripciones Técnicas, y otros métodos rápidos de control. En el caso de las mezclas drenantes y discontinuas tipo M se analizará, además, la correspondencia entre el contenido de huecos en mezcla y la permeabilidad de la capa según la NLT-327.

7. ESPECIFICACIONES DE LA UNIDAD TERMINADA

7.1 Densidad

En mezclas bituminosas densas, semidensas y discontinuas tipo F, la densidad alcanzada deberá ser superior al noventa y ocho por ciento (98%) de la densidad Marshall obtenida.

En mezclas drenantes y discontinuas de tipo M, los huecos de la mezcla no podrán diferir en más de dos (±2) puntos porcentuales del obtenidos en la fórmula de trabajo.

7.2 Espesor y anchura

El espesor de la capa no deberá ser inferior, en ningún punto, al cien por ciento (100%) del previsto en la sección-tipo de los Planos de Proyecto.

En todos los semiperfiles se comprobará la anchura de extensión, que en ningún caso será inferior a la teórica deducida de la sección-tipo de los Planos de Proyecto.

7.3 Regularidad superficial

El Índice de Regularidad Internacional (IRI), según la NLT-330, deberá cumplir los valores establecidos en los apartados 7.3 correspondientes de los artículos 542. y 543.

7.4 Macrotextura superficial y resistencia al deslizamiento

La superficie de la capa deberá presentar una textura homogénea, uniforme y exenta de segregaciones.
Únicamente a efectos de recepción de capas de rodadura, la macrotextura superficial, según la NLT-335, y la resistencia al deslizamiento, según la NLT-336, no deberán ser inferiores a los valores indicados en los apartados 7.4 correspondientes de los artículos 542 y 543.

8. LIMITACIONES DE LA EJECUCIÓN

Salvo autorización expresa del Director de las Obras, no se permitirá la puesta en obra de la mezcla bituminosa en caliente:

− Cuando la temperatura ambiente a la sombra, sea inferior a 12 grados Celsius (12 ºC), con tendencia a disminuir. Con viento intenso, después de heladas, especialmente sobre tableros de puentes y estructuras, el Director de las Obras podrá aumentar el valor mínimo de la temperatura.
− Cuando se produzcan precipitaciones atmosféricas.

Se podrá abrir a la circulación la capa ejecutada tan pronto como alcance una temperatura de sesenta grados Celsius (60ºC), evitando las paradas y cambios de dirección sobre la mezcla recién extendida hasta que ésta alcance la temperatura ambiente.

9. CONTROL DE CALIDAD

9.1 Control de procedencia de los materiales

9.1.1 Control de procedencia del ligante hidrocarbonado

El ligante hidrocarbonado deberá cumplir las especificaciones establecidas en el apartado 211.4 del artículo 211 ó 215.4 del artículo 215 del PG-3, según el tipo de ligante hidrocarbonado a emplear.

9.1.2 Control de procedencia de los áridos

Si con los áridos, a emplear en capas de rodadura o intermedia, se aportara certificado acreditativo del cumplimiento de las especificaciones obligatorias de este artículo o documento acreditativo de la homologación de la marca, sello o distintivo de calidad del árido, según lo indicado en el apartado 542.12 del PG-3, los criterios descritos a continuación para realizar el control de procedencia de los áridos no serán de aplicación obligatoria, sin perjuicio de las facultades que corresponden al Director de las Obras.

En el supuesto de no cumplirse las condiciones indicadas en el párrafo anterior, de cada procedencia del árido, y para cualquier volumen de producción previsto, se tomarán cuatro (4) muestras, según la UNE-EN 932-1, y de cada fracción de ellas se determinará:

− El coeficiente de Los Ángeles del árido grueso, según la UNE-EN 1097-2.
− El coeficiente de pulimento acelerado del árido grueso para capas de rodadura, según el anexo D de la UNE 146130.
− La densidad relativa y absorción del árido grueso y del árido fino, según la UNE-EN 1097-6.
− La granulometría de cada fracción, según la UNE-EN 933-1.
− El equivalente de arena, según la UNE-EN 933-8 y, en su caso, el índice de azul de metileno, según la UNE-EN 933-9.

El Director de las Obras podrá ordenar la repetición de estos ensayos con nuevas muestras, y la realización de los siguientes ensayos adicionales:

− Proporción de partículas trituradas del árido grueso, según la UNE-EN 933-5.
− Proporción de impurezas del árido grueso, según el anexo C de la UNE 146130.

9.1.3 Control de procedencia del polvo mineral de aportación

Si con el polvo mineral, a emplear en las mezclas bituminosas en caliente, se aportara certificado acreditativo del cumplimiento de las especificaciones obligatorias de este anejo o documento acreditativo de
la homologación de la marca, sello o distintivo de calidad del polvo mineral, según lo indicado en el apartado 542.12, los criterios descritos a continuación para realizar el control de procedencia del polvo mineral no serán de aplicación obligatoria, sin perjuicio de las facultades que corresponden al Director de las Obras.

En el supuesto de no cumplirse las condiciones indicadas en el párrafo anterior, de cada procedencia del polvo mineral de aportación, y para cualquier volumen de producción previsto, se tomarán cuatro (4) muestras y con ellas se determinará la densidad aparente, según la NLT-176.

9.1.4 Control de procedencia del polvo de caucho

Con el polvo de caucho a emplear en las mezclas bituminosas en caliente, se aportará certificado acreditativo del origen del material y del cumplimiento de las especificaciones recogidas en las prescripciones del artículo “Polvo de caucho para materiales bituminosos” (Anejo 2 de este Manual), así como indicación expresa de que proviene de neumáticos fuera de uso.

9.2 Control de calidad de los materiales

9.2.1 Control de calidad de los ligantes hidrocarbonados

El ligante hidrocarbonado deberá cumplir las especificaciones establecidas en el apartado 211.5 del artículo 211 de este Pliego o 215.5 del artículo 215 de este Pliego, según el tipo de ligante hidrocarbonado a emplear.

9.2.2 Control de calidad de los áridos

Se examinará la descarga al acopio o alimentación de tolvas en frío, desechando los áridos que, a simple vista, presenten restos de tierra vegetal, materia orgánica o tamaños superiores al máximo. Se acopiarán, aparte, aquellos que presenten alguna anomalía de aspecto, tal como distinta coloración, segregación, lajas, plasticidad, etc.

Se vigilará la altura de los acopios y el estado de sus elementos separadores y los accesos.

Con cada fracción de árido que se produzca o reciba, se realizarán los siguientes ensayos:

- Al menos dos (2) veces al día:
 - Análisis granulométrico de cada fracción, según la UNE-EN 933-1.
 - Equivalente de arena, según la UNE-EN 933-8 y, en su caso, el índice de azul de metileno, según la UNE-EN 933-9.

- Al menos una (1) vez a la semana, o cuando se cambie de procedencia:
 - Índice de lajas del árido grueso, según la UNE-EN 933-3.
 - Proporción de partículas trituradas del árido grueso, según la UNE-EN 933-5.
 - Proporción de impurezas del árido grueso, según el anexo C de la UNE 146130.

- Al menos una (1) vez al mes, o cuando se cambie de procedencia:
 - Coeficiente de Los Ángeles del árido grueso según la UNE-EN 1097-2.
 - Coeficiente de pulimento acelerado del árido grueso para capas de rodadura, según el anexo D de la UNE 146130.
 - Densidad relativa y absorción del árido grueso y del árido fino, según la UNE-EN 1097-6.

9.2.3 Control de calidad del polvo mineral de aportación

Sobre cada partida que se reciba se realizarán los siguientes ensayos:

- Al menos una (1) vez al día, o cuando cambie de procedencia:
 - Densidad aparente, según la NLT-176.
9.2.4 Control de calidad del polvo de caucho

Se examinará cada suministro de polvo de caucho y se desecharán aquellos que presenten tamaños superiores a los exigidos, humedad o aglomeraciones que impidan la fluencia libre del material.

Sobre cada partida que se reciba se realizarán los siguientes ensayos:

- Granulometría según el procedimiento UNE EN 933-1, con las modificaciones señaladas en el artículo “Polvo de caucho para materiales bituminosos” (Anexo 2 de este Manual), y utilizando los tamices 2; 1,5; 1; 0,5; 0,25; 0,125 y 0,063 mm (serie UNE EN 933-2).
- Humedad mediante secado en estufa (UNE 3 103 300).
- Contenidos de materiales metálicos, materiales textiles y de otras impurezas, según los procedimientos señalados en el apartado 4 del artículo “Polvo de caucho para materiales bituminosos” (Anexo 2 de este Manual).

9.3 Control de ejecución

9.3.1 Fabricación

Se tomará diariamente un mínimo de dos (2) muestras, según la UNE-EN 932-1, una por la mañana y otra por la tarde, de la mezcla de áridos en frío antes de su entrada en el secador, y con ellas se efectuarán los siguientes ensayos:

- Análisis granulométrico del árido combinado, según la UNE-EN 933-1.
- Equivalente de arena, según la UNE-EN 933-8 y, en su caso, el índice de azul de metileno, según la UNE-EN 933-9, del árido combinado.

Las tolerancias admisibles, en más o en menos, respecto de la granulometría de la fórmula de trabajo serán las siguientes, referidas a la masa total de áridos (incluido el polvo mineral):

- Tamices superiores a 2 mm de la UNE-EN 933-2: ± 3%
- Tamices comprendidos entre 2 mm y 0,063 mm de la UNE-EN 933-2: ± 2%
- Tamiz 0,063 mm de la UNE-EN 933-2: ± 1%

Se tomará diariamente al menos una (1) muestra de la mezcla de áridos en caliente, y se determinará su granulometría, según la UNE-EN 933-1, que cumplirá las tolerancias indicadas en el párrafo anterior. Al menos semanalmente, se verificará la precisión de las básculas de dosificación, y el correcto funcionamiento de los indicadores de temperatura de los áridos y del ligante hidrocarbonado.

Se tomarán muestras a la descarga del mezclador, y con ellas se efectuarán los siguientes ensayos:

A la salida del mezclador o silo de almacenamiento, sobre cada elemento de transporte:

- Control del aspecto de la mezcla, y medición de su temperatura. Se rechazarán todas las mezclas segregadas, carbonizadas o sobrecalentadas, las mezclas con espuma y aquéllas cuya envuelta no sea homogénea o presenten indicios de humedad.

Al menos (2) veces al día (mañana y tarde), y al menos una (1) vez por lote:

- Dosificación de ligante, según la UNE-EN 12697-1.
- Granulometría de los áridos extraídos, según la UNE-EN 12697-2.
- Determinación del contenido de polvo de caucho, mediante control de las pesadas de la central de fabricación y mediante el método de combustión recogido en la norma NLT-384 (UNE-EN 12697-39)
aplicado sobre los áridos extraídos.

Se considerará como lote el volumen de material que resulte de aplicar los criterios del apartado 9.4.

La tolerancia admisible, en más o en menos, respecto de la dotación de ligante hidrocarbonado y del polvo de caucho de la fórmula de trabajo (corregido con los correspondientes coeficientes de calibración previamente establecidos en el laboratorio) será del tres por mil (± 0,3%) en masa, del total de áridos (incluido el polvo mineral), sin bajar del mínimo especificado en el apartado 3 para el tipo de mezcla que se trate.

Al menos una (1) vez al día, y al menos una (1) vez por lote:

- En mezclas densas, semidensas y discontinuas tipo F, análisis de huecos y resistencia a la deformación plástica empleando el aparato Marshall (serie de tres [3] probetas como mínimo), según la NLT-159.

9.3.2 Puesta en obra

9.3.2.1 Extensión

Se medirá la temperatura ambiente para tener en cuenta las limitaciones que se fijan en el apartado 8 de este artículo.

Antes de verter la mezcla del elemento de transporte a la tolva de la extendedora, se comprobará su aspecto y se medirá su temperatura. También se verificará que se ha sobrepasado el período de maduración establecido en la fórmula de trabajo.

Se comprobará frecuentemente el espesor extendido, mediante un punzón graduado.

9.3.2.2 Compactación

Se comprobará la composición y forma de actuación del equipo de compactación, verificando:

- Que el número y tipo de compactadores son los aprobados.
- El funcionamiento de los dispositivos de humectación, limpieza y protección.
- El lastre, peso total y, en su caso, presión de inflado de los compactadores.
- La frecuencia y la amplitud en los compactadores vibratorios.
- El número de pasadas de cada compactador.

En mezclas drenantes, se comprobará con la frecuencia que sea precisa la permeabilidad de la capa durante su compactación, según la NLT-327.

Al terminar la compactación, se medirá la temperatura en la superficie de la capa.

9.4 Control de recepción de la unidad terminada

Se considerará como lote, que se aceptará o rechazará en bloque, al menor que resulte de aplicar los tres (3) criterios siguientes a una (1) sola capa de mezcla bituminosa en caliente:

- Quinientos metros (500 m) de calzada.
- Tres mil quinientos metros cuadrados (3 500 m²) de calzada.
- La fracción construida diariamente.
En mezclas tipo D, S, F y M con espesores iguales o superiores a 2,5 mm, se extraerán testigos en puntos aleatoriamente situados, en número no inferior a cinco (5), y se determinarán su densidad y espesor, según la NLT-168. En el caso de mezclas tipo M de espesor inferior a 2,5 mm, se determinará la dotación media mediante pesada de la mezcla de un camión y medida de la superficie tratada con ella.

Se controlará la regularidad superficial del lote a partir de las veinticuatro horas (24 h) de su ejecución mediante la determinación del índice de regularidad internacional (IRI), según la NLT-330, que deberá cumplir lo especificado en los apartados 7.3 de los artículos 542 y 543 del PG-3. La comprobación de la regularidad superficial de toda la longitud de la obra, en capas de rodadura, tendrá lugar además antes de la recepción definitiva de las obras.

En capas de rodadura, se realizarán los ensayos siguientes, que deberán cumplir lo establecido en los apartados 7.4 de los artículos 542 y 543:

- Medida de la macrotextura superficial, según la NLT-335, antes de la puesta en servicio de la capa, en cinco (5) puntos del lote aleatoriamente elegidos de forma que haya al menos uno por hectómetro (1/hm).
- Determinación de la resistencia al deslizamiento, según la NLT-336, una vez transcurridos dos (2) meses de la puesta en servicio de la capa.

10. CRITERIOS DE ACEPTACIÓN O RECHAZO

10.1 Densidad

En mezclas densas, semidensas y drenantes se aplicarán los criterios establecidos en el apartado 10.1 del artículo 542.

10.2 Espesor o dotación

En mezclas densas, semidensas y drenantes el espesor medio obtenido no deberá ser inferior al especificado en el apartado 10.2 del artículo 542.

En mezclas discontinuas el espesor medio obtenido no deberá ser inferior a especificado en el apartado 10.2 del artículo 543.

En mezclas discontinuas la dotación media de mezcla obtenida en el lote, 9.4, no podrá ser inferior a la especificada en el apartado 543.10.1

10.3 Regularidad superficial

Si los resultados de la regularidad superficial de la capa acabada exceden los límites establecidos en los apartados 7.3 de los artículos 542 y 543 del PG-3, se demolerá el lote y se retirará a vertedero por cuenta del Contratista.

10.4 Macrotextura superficial y resistencia al deslizamiento

El resultado medio de los ensayos de las medidas de la macrotextura superficial y de la resistencia al deslizamiento no deberán resultar inferiores a los valores establecidos en los apartados 7.4 de los artículos 542 y 543 del PG-3.
11. MEDICIÓN Y ABONO

Únicamente cuando la capa de asiento construida no esté incluida en el mismo Contrato, se podrá abonar la comprobación y, en su caso, reparación de la superficie existente, por metros cuadrados (m\(^2\)) realmente ejecutados.

En el resto de los casos la preparación de la superficie existente no será objeto de abono, ni se incluirá en esta unidad de obra. El riego de adherencia se abonará según lo prescrito en el artículo 531, riegos de adherencia, del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3).

La fabricación y puesta en obra de mezclas bituminosas densas, semidensas y drenantes se abonará por toneladas (t), según su tipo, medidas multiplicando las anchuras señaladas para cada capa en los Planos, por los espesores medios y densidades medias deducidas de los ensayos de control de cada lote. En dicho abono se considerará incluido el de los áridos, incluido el procedente de reciclado de mezclas bituminosas, si los hubiere, y el del polvo mineral. No serán de abono las creces laterales, ni los aumentos de espesor por corrección de mermas en capas subyacentes.

La fabricación y puesta en obra de una capa de rodadura de mezcla bituminosa discontinua con polvo de caucho se abonará por metros cuadrados (m\(^2\)) obtenidos multiplicando, la anchura señalada para la capa en los Planos del Proyecto, por la longitud realmente ejecutada.

Este abono incluirá los áridos, el polvo mineral, el polvo de caucho, las adiciones y todas las operaciones de acopio, preparación, fabricación, puesta en obra y terminación. No serán de abono las creces laterales.

Alternativamente y a criterio del Director de la Obra, el abono se realizará por tonelada de mezcla ejecutada, u otro criterio que resulte más apropiado a juicio del Director de la Obra.

12. ESPECIFICACIONES TÉCNICAS Y DISTINTIVOS DE CALIDAD

El cumplimiento de las especificaciones técnicas obligatorias requeridas a los productos contemplados en este artículo, se podrá acreditar por medio del correspondiente certificado que, cuando dichas especificaciones estén establecidas exclusivamente por referencia a normas, podrá estar constituido por un certificado de conformidad a dichas normas.

Si los referidos productos disponen de una marca, sello o distintivo de calidad que asegure el cumplimiento de las especificaciones técnicas obligatorias de este artículo, se reconocerá como tal cuando dicho distintivo esté homologado por la Dirección General de Carreteras del Ministerio de Fomento u otros Organismos Públicos con competencia para ello.

El certificado acreditativo del cumplimiento de las especificaciones técnicas obligatorias de este artículo podrá ser otorgado por las Administraciones Públicas competentes en materia de carreteras, la Dirección General de Carreteras del Ministerio de Fomento (según ámbito) o los Organismos españoles -públicos y privados- autorizados para realizar tareas de certificación o ensayos en el ámbito de los materiales, sistemas y procesos industriales, conforme al Real Decreto 2200/1995, de 28 de diciembre.
ANEJO 6

TRAMOS CON MEZCLAS BITUMINOSAS CON POLVO DE CAUCHO
(Diciembre 2005)

Tabla 1

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Año</th>
<th>Longitud (km)</th>
<th>Tráfico</th>
<th>Espesor de capa (cm) y tipo de mezcla</th>
<th>Caucho en el betún (%)</th>
<th>Betún (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-433: Sevilla a Cazalla de la Sierra</td>
<td>1996</td>
<td>0,300</td>
<td>T2</td>
<td>3</td>
<td>-</td>
<td>5,7</td>
</tr>
<tr>
<td>SE-30</td>
<td>1996</td>
<td>0,300</td>
<td>T1</td>
<td>3</td>
<td>-</td>
<td>5,7</td>
</tr>
<tr>
<td>M-300: Alcalá-Arganda del Rey</td>
<td>1996</td>
<td>0,330</td>
<td>T2</td>
<td>5</td>
<td>-</td>
<td>4,9</td>
</tr>
<tr>
<td>M-221 y M-222: Valdaracete a Brea de Tajo</td>
<td>2002</td>
<td>12</td>
<td>T3</td>
<td>5 (S-20)+ 5 (D-20)</td>
<td>10</td>
<td>5,6</td>
</tr>
<tr>
<td>Travesía de Badarán (La Rioja)</td>
<td>2004</td>
<td>0,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Travesía de Argamasilla de Calatava (Ciudad Real)</td>
<td>2004</td>
<td>0,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A-6: Tordesillas</td>
<td>2005</td>
<td>0,8</td>
<td>T0</td>
<td>6 (S-12)</td>
<td>9</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Tabla 2

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Año</th>
<th>Longitud (km)</th>
<th>Tráfico</th>
<th>Espesor de capa (cm) y tipo de mezcla</th>
<th>Caucho en el betún (%)</th>
<th>Betún (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-372 y A-372: Ubrique - El Bosque</td>
<td>2002</td>
<td>16</td>
<td>T3</td>
<td>5 (S-20)+ 2,5 (F-10)</td>
<td>13% 0,4mm</td>
<td>5,5</td>
</tr>
<tr>
<td>M-221 y M-222: Valdaracete</td>
<td>2002</td>
<td>12</td>
<td>T3</td>
<td>5 (S-20)+ 5 (D-20)</td>
<td>13</td>
<td>5,6</td>
</tr>
<tr>
<td>AP-7</td>
<td>2002</td>
<td>1,8</td>
<td>T1</td>
<td>4 y 6 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>4,2</td>
<td></td>
<td>6 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>11,4</td>
<td></td>
<td>6 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,0</td>
<td></td>
<td>5 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
<td>3 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>VA-20: Ronda Este de Valladolid</td>
<td>2004</td>
<td>0,300</td>
<td>T0</td>
<td>6 (S-20)</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>ZA-611: Toro a Venialbo</td>
<td>2004</td>
<td>4</td>
<td>T2</td>
<td>4 (S-20)</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>VA-404: Medina del Campo a Matapozuelos</td>
<td>2004</td>
<td>0,820</td>
<td>T3</td>
<td>6 (S-12)</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>VA-113: Valladolid a Santovendia de Pisuerga</td>
<td>2004</td>
<td>0,150</td>
<td>T2</td>
<td>5</td>
<td>13</td>
<td>5,7</td>
</tr>
<tr>
<td>S-444: Revilla de Camargo – Puente Arce</td>
<td>2004</td>
<td>7,7</td>
<td>T2</td>
<td>3 + 6 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Urbano: Pº Canalejas (Salamanca)</td>
<td>2004</td>
<td>7</td>
<td>-</td>
<td>4 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Urbano. Calle Soto, (Valladolid)</td>
<td>2004</td>
<td>1,2</td>
<td>-</td>
<td>4 (Abierta-12,5)</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>A-4: Tembleque</td>
<td>2004</td>
<td>1,2</td>
<td>T0</td>
<td>5 (Abierta-12,5)</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Ronda Este de Valladolid</td>
<td>2004</td>
<td>0,3</td>
<td>-</td>
<td>6 (S-20)</td>
<td>13</td>
<td>5,15</td>
</tr>
<tr>
<td>ZA-611: Toro-Venialbo</td>
<td>2004</td>
<td>0,6</td>
<td>T0</td>
<td>4 (S-20)</td>
<td>13</td>
<td>5,2</td>
</tr>
<tr>
<td>LE-420: Carrizos de la Ribera a Hospital de Órbigo</td>
<td>2004</td>
<td>0,3</td>
<td>T2</td>
<td>6 (S-12)</td>
<td>13</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 (S-12)</td>
<td>13</td>
<td>6,6</td>
</tr>
<tr>
<td>Urbano: Paseo Juan Carlos I de Valladolid</td>
<td>2004</td>
<td>0,4</td>
<td>-</td>
<td>3 (M-10)</td>
<td>13</td>
<td>5,6</td>
</tr>
<tr>
<td>N-610: Becilla de Valderaduey- Benavente</td>
<td>2005</td>
<td>1,5</td>
<td>T1</td>
<td>5 (S-12)</td>
<td>13</td>
<td>5,5</td>
</tr>
<tr>
<td>A-6: Tordesillas</td>
<td>2005</td>
<td>0,8</td>
<td>T0</td>
<td>6 (PA-12)</td>
<td>9</td>
<td>5,0</td>
</tr>
<tr>
<td>LE-232 Sahagún-Almanza</td>
<td>2005</td>
<td>1</td>
<td>T-3</td>
<td>4</td>
<td>13</td>
<td>5,5</td>
</tr>
</tbody>
</table>
Tabla 3
Tramos realizados por “vía seca” en Catalunya

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Año</th>
<th>Longitud (km)</th>
<th>Tráfico</th>
<th>Espesor de capa (cm) y tipo de mezcla</th>
<th>Caucho en la mezcla (%)</th>
<th>Betún (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacarisses</td>
<td>1994</td>
<td>2,6 km</td>
<td>T3</td>
<td>4 cm (D-12)</td>
<td>2%</td>
<td>5,5%</td>
</tr>
<tr>
<td>B-140 Sabadell-Mollet</td>
<td>1997</td>
<td>830 m</td>
<td>T0</td>
<td>5,8 cm (S-12)</td>
<td>2%</td>
<td>6,2%</td>
</tr>
</tbody>
</table>

Tabla 4
Otros tramos realizados por “vía seca”

<table>
<thead>
<tr>
<th>Tramo</th>
<th>Año</th>
<th>Longitud (km)</th>
<th>Tráfico</th>
<th>Espesor de capa (cm) y tipo de mezcla</th>
<th>Caucho en el betún (%)</th>
<th>Betún (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-433: Sevilla a Cazalla de la Sierra</td>
<td>1996</td>
<td>0,3</td>
<td>T2</td>
<td>3 (F-10)</td>
<td>1</td>
<td>5,7</td>
</tr>
<tr>
<td>M-300: Alcalá-Arganda del Rey</td>
<td>1996</td>
<td>0,33</td>
<td>T2</td>
<td>3 (F-10)</td>
<td>1</td>
<td>6,1</td>
</tr>
<tr>
<td>Ayuntamientos de Alicante, Altea, Elche, Murcia, Orihuela y Torrevieja (varios tramos)</td>
<td>1998 a 2005</td>
<td>65</td>
<td>-</td>
<td>3 (M-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Autovía del Noroeste</td>
<td>2003 a 2005</td>
<td>11</td>
<td>-</td>
<td>3 (F-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Generalitat Valenciana</td>
<td>1996 a 2004</td>
<td>18,5</td>
<td>-</td>
<td>3 (M-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Diputación de Alicante</td>
<td>1999 a 2002</td>
<td>15</td>
<td>-</td>
<td>3 (M-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>N-344: Travesía de Caudete</td>
<td>1999</td>
<td>1,1</td>
<td>-</td>
<td>3 (M-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>N-332: Favara</td>
<td>2004</td>
<td>2</td>
<td>-</td>
<td>3 (M-10)</td>
<td>0,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Carretera de Castraz</td>
<td>2004</td>
<td>1,5</td>
<td>T2</td>
<td>5 (S-12)</td>
<td>1</td>
<td>5,34</td>
</tr>
</tbody>
</table>