Las barreras de seguridad son elementos muy importantes en el acondicionamiento de una carretera pues su presencia o ausencia puede incidir directamente en el número y gravedad de los accidentes que se producen. Por ello es preciso definir en qué casos son necesarias y establecer un orden de prioridad que permita iniciar la colocación de aquellas cuya necesidad es más acuciante.

Las experiencias y ensayos realizados en los últimos años en diversos países europeos y Estados Unidos han permitido determinar ciertos detalles técnicos que mejoran considerablemente el comportamiento de estas instalaciones. Por este motivo se incluye en las Normas un capítulo referente a las características técnicas.

Por lo expuesto y al amparo de lo dispuesto en el número 2 de la Orden Ministerial de 27 de junio de 1.961, esta Dirección General ha resuelto aprobar las adjuntas Normas sobre barreras de seguridad que tendrán carácter provisional hasta que con la experiencia que se adquiera, se redacten con carácter definitivo.

EL DIRECTOR GENERAL

Ilmos. Sres. Secretarios Generales
Ilmos. Sres. Jefes Regionales
Ilmos. Sres. Jefes Provinciales
Ilmos. Sres. Ingenieros
ORDEN CIRCULAR 229/71. C. V.
Febrero 1971

normas sobre barreras de seguridad
ÍNDICE

1.- INTRODUCCION

2.- CONDICIONES PRECIAS PARA SU INSTALACIÓN
 2.1.- CONSIDERACIONES GENERALES
 2.2.- MEDIANAS Y ZONA ENTRE PLATAFORMAS
 2.3.- MARGENES DE LA CARRETERA
 2.4.- OBRAS DE FABRICA
 2.5.- OBSTÁCULOS FIJOS
 2.5.1.- Pretiles y hastiales de muros
 2.5.2.- Soportes de señales
 2.5.3.- Postes y árboles
 2.5.4.- Cunetas y zanjas
 2.5.5.- Desmontes
 2.5.6.- Báculos de iluminación
 2.5.7.- Edificaciones

3.- PRIORIDAD EN LA INSTALACION
 3.1.- CONSIDERACIONES GENERALES
 3.2.- MEDIANAS
 3.3.- MARGENES DE LA CARRETERA
 3.3.1.- Diferencia de la gravedad de accidentes
 3.3.2.- Probabilidad de salida del vehículo
 3.3.2.1.- Velocidad
 3.3.2.2.- Peligrosidad de las curvas
 3.3.2.3.- Anchura del arcén
 3.3.2.4.- Pendiente de la calzada
 3.3.2.5.- Condiciones climáticas
 3.3.3.- Intensidad de tráfico (I.M.D.)
 3.3.4.- Índice de necesidad total N
 3.4.- OBRAS DE FABRICA
 3.5.- OBSTÁCULOS FIJOS

4.- CARACTERISTICAS TECNICAS
 4.1.- CONSIDERACIONES GENERALES
 4.2.- BARRERAS FLEXIBLES
 4.3.- BARRERAS SEMIRRIGIDAS
 4.3.1.- de perfil abierto
 4.3.1.1.- perfil abierto en mediana
 4.3.1.2.- perfil abierto en márgenes
 4.3.2.- de perfil cerrado
 4.4.- BARRERAS RIGIDAS
 4.5.- NUEVOS TIPOS DE BARRERAS
NORMAS
SOBRE
BARRERAS DE SEGURIDAD

1.- INTRODUCCIÓN

Las barreras de seguridad son elementos esenciales en la vialidad de las carreteras, pues afectan directamente a la seguridad de los usuarios.

Todos aquellos accidentes que se producen en un vehículo aislado que se sale de la calzada, pueden tener relación con la presencia o ausencia de barreras de seguridad y con las características de éstas.

La necesidad de las barreras de seguridad ha ido creciendo como consecuencia del aumento de las velocidades de los vehículos. Las Normas que aquí se contienen están destinadas fundamentalmente a carreteras de alta velocidad real. Pueden aplicarse también a carreteras menos importantes, pero para éstas no resultan, a veces, necesarias algunas de las conclusiones a que se llega.

El problema de las barreras de seguridad no está resuelto definitivamente. Son muchas las investigaciones que se han realizado hasta el momento, pero los estudios deberán continuar todavía por mucho tiempo, antes de llegar a encontrar una solución rotundamente eficaz y asequible económicamente. Sin embargo, los resultados de estas investigaciones han permitido ya redactar estas Normas que, por supuesto, están sujetas a todas las modificaciones que estudios posteriores vayan aconsejando.
A nivel español es necesario investigar detalladamente, según el tipo de carretera, todos los accidentes que se producen en vehículos que se salen de la calzada. Hace falta profundizar en el conocimiento estadístico de las velocidades y ángulos a que los vehículos se salen de la calzada, las distancias que recorren a partir de este momento, los obstáculos con los que chocan y la distancia a que éstos se encuentran de la calzada, los efectos que se producen en los choques según los tipos de barreras de seguridad, etc. Todo esto además debe relacionarse con la gravedad de los accidentes producidos. Conviene también que estos estudios se hagan y publiquen de una manera continua, extendidos al mayor número posible de carreteras.

Nunca debe proyectarse una barrera de seguridad pensando en proteger alguna instalación de la carretera (siempre que en ella no exista peligro para personas) contra el choque de los vehículos. Las barreras deben proyectarse siempre con vistas a proteger de los impactos al vehículo y sus ocupantes (y en su caso algún otro usuario como el peatón), con lo cual indirectamente quedará protegida también la instalación.

Es sabido que muchas instalaciones de barreras de seguridad requieren un gasto considerable de conservación, pero la inversión que ello implica resulta rentable económicamente y, si se mira desde el punto de vista moral, todavía está más justificada. Debe tenerse en cuenta, por tanto, que cuanto más sean dañadas las barreras de seguridad más contribuirán a reducir la gravedad de los accidentes, si están implantadas en un lugar donde realmente son necesarias, y por tanto más justificada estará la inversión que representan.
Por mucho que se actúe y se mejoren las condiciones de la carretera y su señalización, seguirá habiendo una minoría importante de vehículos que se salen de la calzada, debido, en su mayor parte a fallos del conductor y, en menor proporción, a fallos del vehículo. Pues bien, las carreteras deben acondicionarse, en lo posible, para proteger a estos vehículos y sus ocupantes.

Las Normas se han dividido en tres partes, correspondientes a las fases sucesivas del problema, que es preciso analizar antes de proyectar unas barreras de seguridad.

Estas partes son:

- CONDICIONES PRECISAS PARA SU INSTALACIÓN
- PRIORIDAD EN LA INSTALACIÓN
- CARACTERÍSTICAS TÉCNICAS Y DETALLES

2. CONDICIONES PRECISAS PARA SU INSTALACIÓN

2.1. CONSIDERACIONES GENERALES

La misión de las barreras de seguridad es impedir que un vehículo pueda chocar con algo más peligroso que la propia barrera. La colisión con la barrera de seguridad produce un daño en el vehículo y sus ocupantes, que a veces puede resultar muy grave, llegándose en ciertos casos al vuelco del vehículo.

Las estadísticas sobre la influencia de las barreras de seguridad en el número de accidentes no son muy concordantes, pero en líneas generales, parece que su colocación da lugar a un ligero aumento en el número de accidentes, aunque disminuya su gravedad. Por otra parte hay ciertos accidentes que puede asegurarse —que son imputables a la barrera, como aquellos en que un vehículo es rechazado por la barrera y devuelto a la calzada, yendo a chocar
con otro vehículo que circula correctamente, a veces en sentido opuesto, con lo que el nuevo accidente puede ser muy grave. Es pues necesario, para que sea conveniente la instalación de barreras de seguridad, que estos efectos negativos sean compensados con creces por la positiva disminución de la gravedad de los otros accidentes como consecuencia de la existencia de las barreras.

Es muy difícil dictar unas normas que definan con precisión matemática cuándo deben y cuándo no deben colocarse barreras de seguridad. La investigación que sobre esta materia se realiza, en Europa y América, es fundamentalmente empírica y corresponde a los dos estudios siguientes:

1º. - Análisis del comportamiento de las barreras de seguridad ante el impacto de diversos tipos de vehículos, lanzados expresamente contra ellas, en condiciones varias de velocidad, peso y ángulo de incidencia. Estos ensayos se han realizado, principalmente, por organismos oficiales de distintos países.

2º. - Estudio estadístico de accidentes producidos en vehículos que se salen de la calzada. Dentro de estos estudios son particularmente interesantes los dos casos siguientes: a) Análisis estadístico de accidentes producidos en tramos de carretera análogos, unos provistos de barreras de seguridad y otros sin ellas. b) Análisis estadístico de accidentes producidos en un mismo tramo de carretera antes y después de instalar barreras de seguridad.

Basados en los estudios y experiencias realizados hasta el momento, y muy especialmente en las conclusiones contenidas en las publicaciones "Research on crash barriers" y "Highway Research Board N.C.H.R.P.R.54", se fijan más adelante los valores de las variables que determinan la conveniencia de instalar o no barreras de seguridad. En el caso de ser convenientes, se entiende que la instalación de las barreras de seguridad permite pronosticar que dismi -
nuirá, en su conjunto, la gravedad de los accidentes que se producen en ese punto o tramo de carretera en los vehículos que se salen de la calzada, mientras que si no son convenientes, su instalación supondrá probablemente el aumento de la gravedad del conjunto de aquellos accidentes.

La conveniencia de instalar o no barreras de seguridad en un punto dado es independiente del tráfico y de las características de la calzada. Así por ejemplo es indiferente que un terraplén corresponda a la parte exterior o interior de una curva ya que, para un vehículo, la gravedad del accidente no depende de que caiga por una u otra margen. Sin embargo, debe establecerse un orden de prioridad para la colocación de las barreras y, como la probabilidad de que un vehículo se salga de la calzada es mucho mayor por el exterior de una curva que por el interior de la misma, parece lógico colocar barreras de seguridad por el exterior de las curvas, siempre que sean convenientes, y proceder a la colocación de barreras en los interiores de las curvas, con un criterio mucho más restrictivo, como se verá en el apartado 3.3.2.2.

Cuatro son las variables o características que deben compararse para decidir la conveniencia de instalar barreras de seguridad. Basta que esta conveniencia se cumpla en una cualquiera de las cuatro, para que la instalación de barreras de seguridad esté justificada, desde el punto de vista de la seguridad de la circulación. Sin embargo, en todos los casos en que esta justificación existe, deberán instalarse únicamente según el orden de prioridad que se fija en el apartado 3.

Estas características son:

- MEDIANA Y ZONA ENTRE PLATAFORMAS
- MARGENES DE LA CARRETERA
- OBRAS DE FÁBRICA
- OBSTÁCULOS FIJOS
2.2.- MEDIANA Y ZONA ENTRE PLATAFORMAS

El criterio para instalar barreras de seguridad en la mediana es aplicable, como es lógico, a autopistas y autovías.

A efectos de la colocación de barreras de seguridad - se considera como anchura de mediana la distancia, medida entre líneas blancas de borde de cada una de las calzadas, incluyendo el ancho de las propias líneas.

Deberán instalarse barreras de seguridad siempre en medianas de anchura inferior a cinco metros, en la medida que lo vayan permitiendo los créditos, y será potestativa la instalación - en medianas con anchuras comprendidas entre 5 y 12 m. En medianas de más de 12 m de anchura no se instalarán.

No se instalarán, en general, barreras de seguridad - en carreteras urbanas ni en medianas con plantaciones arbustivas - que por sí mismas puedan servir de defensa.

Debe tenerse en cuenta que con una mediana de anchura superior a la indicada de 12 m es muy poco probable que un vehículo cruce a la calzada de sentido opuesto y por este motivo no está justificada la instalación de las barreras de seguridad, ya que, en general, su instalación aumentará la gravedad de aquellos accidentes en los que un vehículo no cruzaría de calzada aún sin existir las barreras. Sin embargo, puede darse algún caso excepcional de vehículos que, aún así, salten a la calzada de sentido opuesto.

Como excepción a la regla anterior se podrán instalar también barreras de seguridad en medianas con anchuras superiores a las indicadas, y únicamente en la calzada superior, cuando las calzadas estén a distinto nivel y sea probable que un vehículo que se salga de la superior alcance la inferior.
Las márgenes interiores (lado de la mediana) de estas carreteras deberán también comprobarse para los casos 2.3, 2.4, y 2.5.

Puede asimilarse a una mediana, a efectos de instalación de barreras de seguridad, la franja de terreno comprendida entre una calzada y otra vía paralela próxima, como por ejemplo otra carretera, un ferrocarril o un curso de agua con profundidad de esta superior a 1 m.

2.3. - MÁRGENES DE LA CARRETERA

Podrán instalarse barreras de seguridad en las márgenes cuando la "posible altura de caída" del vehículo, para una inclinación dada sea igual o superior a la indicada a continuación.

<table>
<thead>
<tr>
<th>inclinación</th>
<th>distancia horizontal</th>
<th>"Posible altura de caída"</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,0</td>
<td>altura en vertical</td>
<td>1,00 m</td>
</tr>
<tr>
<td>1,5</td>
<td></td>
<td>1,50 m</td>
</tr>
<tr>
<td>2,0</td>
<td></td>
<td>3,00 m</td>
</tr>
<tr>
<td>2,5</td>
<td></td>
<td>6,00 m</td>
</tr>
<tr>
<td>3,0</td>
<td></td>
<td>9,00 m</td>
</tr>
<tr>
<td>4,0</td>
<td></td>
<td>14,00 m</td>
</tr>
<tr>
<td>> 4,0</td>
<td></td>
<td>NO DEBEN INSTALARSE</td>
</tr>
</tbody>
</table>

NOTAS:

1- Para valores intermedios puede interpolarse o situar el punto en el gráfico de la Figura 1, cuya curva I=100 nos delimita las dos zonas donde deben y no deben -- instalarse barreras de seguridad.

2- Cuando el talud tenga varias inclinaciones debe tomarse el valor medio.
3- En todos los casos y sobre todo para "posibles alturas de caída" más bajas debe tantearse la posibilidad de ataluzar el terraplén, lo cual puede resultar más seguro y más económico que instalar barreras.

4- Este criterio está basado fundamentalmente en experiencias extranjeras por lo que sería muy conveniente poder ir corrigiéndolo para adaptarlo a nuestras carreteras. Para ello será necesario estudiar y analizar lo que ocurre en España con este tipo de accidentes y ver qué conclusiones pueden deducirse. Conviene por tanto que se envíen a la Dirección General de Carreteras todos los estudios y estadísticas que se hayan realizado o se realicen en el futuro sobre este tema a fin de que puedan servir para fijar un criterio más correcto.
Toda obra de fábrica debe estar dotada de protección que impida la caída de los vehículos que puedan salirse de la calzada, bien sea un pretil de fábrica o una barrera metálica con suficiente rigidez y resistencia.

No es admisible instalar una simple barandilla, que, por otra parte, puede ser necesaria para los peatones, si no va acompañada de un tipo de defensa robusto que evite la caída de los vehículos.

La barrera de seguridad o pretil y la barandilla podrán instalarse formando un elemento único o bien separadamente en cuyo caso la defensa rígida (barrera de seguridad o pretil) debe situarse más al interior de la calzada.

En la última parte de estas normas, al hablar de características, se indican los tipos más convenientes de defensas para las obras de fábrica.

(1) El Grupo de Investigación de barreras de seguridad de la OCDE, está actualmente realizando un estudio sobre las barreras de seguridad en puentes. Este estudio tiene prevista su terminación para enero de 1972. Tan pronto como se conozcan los resultados se informará de las conclusiones a que se haya llegado; y su aplicación a estas normas.
2.5.- OBSTÁCULOS FIJOS

Este criterio sólo deberá aplicarse a aquellas carreteras modernizadas donde ya se haya tenido en cuenta el alejamiento o supresión de todos los obstáculos fijos peligrosos. No tiene sentido aplicar este criterio a una carretera, por buenas que sean sus características geométricas, si a lo largo de ella existen infinidad de árboles, postes, obras de fábrica, casas, zanjas, cunetas profundas, aceras etc., que harían costosísima la instalación.

Es indudable que la necesidad de proteger a los usuarios de los impactos con obstáculos fijos es mucho mayor para carreteras o tramos de carretera de alta velocidad real.

Entre las zonas especialmente peligrosas podemos citar la parte exterior de las "curvas muy peligrosas" (ver definición en el apartado 3.3.2.2.) y las caras frontales de los pretiles de obras de fábrica, sobre todo cuando la calzada (e incluso la plataforma) se estrechan.

Los obstáculos que deben considerarse son tanto más peligrosos cuanto más próximos estén al borde de la calzada. Estadísticamente se ha comprobado que los situados a más de 9 m del borde de la calzada apenas influyen en la disminución de la seguridad. Por motivos económicos, salvo para las carreteras de gran velocidad real (superior a 120 km/h) bastará analizar los obstáculos situados a menos de 6 metros del borde de la calzada. (línea blanca)

Se enumeran a continuación algunos de los casos más frecuentes en que se necesita colocar barreras de seguridad para proteger a los usuarios del choque con obstáculos fijos.
2.5.1.- Pretiles y hastiales de muros

Debe evitarse que los vehículos puedan chocar frontalmente con la parte inicial de pretiles y hastiales. Esta protección es tanto más necesaria cuanto más rígidos sean aquellos.

En el extremo inicial del pretil o hastial debe anclar se una barrera de seguridad que sea muy rígida junto a aquél (postes muy próximos) con el fin de evitar la discontinuidad con la rigidez del pretil (prácticamente infinita). La rigidez de esta barrera irá disminuyendo (aumento de la separación de los postes) hasta llegar al valor normal.

La longitud de estas barreras de transición variará con las características de la carretera y del tráfico, pero no debe ser inferior a unos 16 m y convendrá a su vez tratar sus extremos iniciales de forma que se evite el choque frontal de los vehículos.

En el caso de que la defensa del puente sea ya semirígida bastará prolongarla antes del principio del puente pudiendo asimismo disminuir su rigidez separando más los postes o haciendo dolos más débiles.

2.5.2.- Soportes de señales

Debe protegerse a los usuarios con barreras de seguridad que eviten el choque de los vehículos con los siguientes elementos:

-Perfiles metálicos con canto en sentido longitudinal igual o superior a 80 milímetros (no incluye los postes cuadrangulares de señales normales que tienen un canto de 40 mm).

-Bases de hormigón o bordillos que sobresalgan más de 15 cm del suelo.

Para otros soportes rígidos debe estudiarse la posibilidad de hacerlos abatibles ante impactos en todos aquellos ca-
sos en que la instalación que soportan pueda derrumbarse por causa del impacto fuera de la calzada. Este tipo de instalación hace in necesarias las barreras de seguridad.

2.5.3.- Postes y árboles

Antes de pensar en instalar barreras de seguridad debe intentarse eliminarlos o, cuando sea posible, hacer los postes frágiles, mediante una sección de rotura fácil.

Los postes y árboles a considerar son los que tienen un diámetro superior a 15 cm a la altura de 0,60 m.

La seguridad de los usuarios exige la supresión de las líneas de postes próximos a la calzada. Deberá evitarse la concesión de nuevas líneas que puedan caer sobre la calzada e intentar suprimir las existentes, pues esta medida eliminará un número importante de accidentes mortales.

2.5.4.- Cunetas y zanjas

En general no deberán colocarse barreras de seguridad para proteger a los vehículos de estos obstáculos. Será más barato y eficaz cubrirlas o cambiar su sección de modo que no sean peligrosas.

Pueden exceptuarse los casos en que inmediatamente de trás de ellas existen otros obstáculos imposibles de eliminar.

En los proyectos de nuevas carreteras deben evitarse las cunetas profundas de paredes verticales pues constituyen una verdadera trampa para las ruedas de los vehículos. Si son necesarias deberán cubrirse, dejando los registros convenientes.
2.5.5.- Desmontes

Si se trata de desmontes en tierra no son necesarias las barreras pues el propio terreno sirve de defensa.

Para desmontes en roca tampoco se colocarán, en general, barreras de seguridad pues el propio desmonte puede hacer las veces de una barrera rígida. Sin embargo puede ser necesario en ciertos puntos suprimir los salientes para que no se produzca una detención brusca y peligrosa de los vehículos. En algún caso, los extremos iniciales de los desmontes rocosos pueden tratarse de manera análoga a los pretiles y hastiales de puentes.

2.5.6.- Balcúlos de iluminación

Deberá intentarse proyectar estos elementos de forma que sean abatibles ante impactos.

Para los casos en que no son abatibles puede convenir protegerlos con barreras de seguridad, aunque no siempre son eficaces, sobre todo si no son rígidas y están muy próximas a los balcúlos, ya que entonces la flecha producida por un impacto puede dar lugar a que el vehículo quede bruscamente detenido en el balcúlo.

En las zonas urbanas no deberán instalarse, salvo casos excepcionales, barreras de seguridad para este tipo de protección.

2.5.7.- Edificaciones

En los casos de edificios muy próximos a la calzada, en curvas peligrosas, puede ser necesario proteger mediante barreras de seguridad tanto a las personas que ocupan los edificios, como a los usuarios de la carretera.
3.- PRIORIDAD EN LA INSTALACIÓN

3.1. - CONSIDERACIONES GENERALES

No es posible, desde el punto de vista económico, instalar barreras de seguridad en todos aquellos puntos donde se deduzca su conveniencia de las Normas del capítulo anterior. Por ello es preciso establecer unos criterios de prioridad para elegir aquellos tramos donde sean más necesarias.

Estos criterios variarán según la causa que haya hecho justificable la instalación de barreras. Por tanto se van a distinguir también los cuatro casos anteriores: medianas, márgenes de la carretera, obras de fábrica y obstáculos fijos.

3.2. MEDIANAS

En los proyectos de nuevas carreteras debe tenderse a instalarlas siempre que sean convenientes por aplicación de los criterios del capítulo anterior.

En las carreteras ya existentes se establecerán dos grados de necesidad según la anchura de la mediana, medida entre líneas blancas de borde de ambas calzadas.

1º. - Mediana de anchura inferior a 5 m
2º. - Mediana de anchura comprendida entre 5 m y 12 m

El grupo 1º tendrá preferencia sobre el 2º y dentro de cada grupo el orden de prioridad se medirá por el valor del coeficiente G (Grado de necesidad)

\[G = 100 \times C_a \times C_t \]

\[C_a = \text{coeficiente de anchura de mediana} \]
\[C_t = \text{coeficiente de tráfico} \]
\[C_a = \frac{A}{A + 5} \]

\[A = \text{Anchura de la mediana en metros, medida entre líneas blancas de borde de ambas calzadas, incluyendo el ancho de estas líneas.} \]

\[C_t = \text{Coeficiente de tráfico (aplicable sólo con I.M.D > 5,000)} \]

\[C_t = 1 + \frac{\sqrt{V - 5,000}}{120} \]

\[V = \text{I.M.D. del año de proyecto} \]

\[G = \text{Valor relativo del grado de necesidad} \]

NOTA: El valor relativo de este coeficiente \(G \) para medianas no tiene ninguna relación, y por tanto no puede compararse, con el que se obtenga para los demás apartados.
3.3.- MARGENES DE LA CARRETERA

Aunque son muchos los factores que pueden intervenir para considerar el grado de necesidad de las barreras en lasMargenes de la carretera, se pueden tener en cuenta los tres siguientes:

- Diferencia de la gravedad del posible accidente, según se considere que no existen barreras de seguridad o que sí existen.
- Probabilidad de que el vehículo se salga de la calzada.
- Intensidad de tráfico (I.M.D.)

3.3.1.- Diferencia de la gravedad del posible accidente

La primera condición puede asociarse en los terraplenes a las dos variables: Inclinación del terraplén y altura de este y es además vinculante, ya que si al representar en la figura 1 el punto que corresponde a los valores de la inclinación y altura del terraplén resulta situado por debajo de la curva \(I = 100 \), las barreras de seguridad no deben instalarse porque su efecto es más perjudicial que beneficioso.

En la figura 1 se han dibujado tres curvas correspondientes a los índices de peligrosidad \(I = 100; \ I = 120 \) e \(I = 140 \) en función de la inclinación del terraplén y la altura de caída. Por encima de la curva superior puede tomarse un valor máximo de \(I = 150 \). Por debajo de la curva de índice de peligrosidad 100 no deben instalarse barreras de seguridad ya que este índice supone que la peligrosidad del despiste es igual con barreras que sin ellas (La curva \(I = 100 \) podría llamarse también "curva de igual gravedad de accidentes").
3.3.2.- Probabilidad de que un vehículo se salga de la calzada

Esta probabilidad depende de muchos factores, pero pueden considerarse como más importantes los 5 siguientes:

- Velocidad (Coeficiente F_v)
- Peligrosidad de las curvas (Coeficiente F_c)
- Anchura del arcén (Coeficiente F_a)
- Pendiente de la calzada (Coeficiente F_p)
- Condiciones climáticas (Coeficiente F_t)

Para cada uno de ellos se indican a continuación unos coeficientes que servirán para corregir el valor del índice de peligrosidad. Los valores de estos coeficientes podrán afinarse en el futuro de acuerdo con los resultados de la experiencia.

3.3.2.1.- Velocidad

La velocidad que se considerará para cada punto donde se estudia la colocación de barreras es aquélla que sólo es superada en ese punto por el 15% de los vehículos.

$$F_v = 0,24 \times \frac{V}{100}$$

$V =$ Velocidad definida anteriormente en Km/h

$F_v =$ Coeficiente multiplicador para tener en cuenta la velocidad.

Un procedimiento aproximado para medir la velocidad que se acaba de definir cuando no existan datos más exactos podría ser el siguiente:

Se elige un conductor rápido pero no temerario y se recorre la carretera en ambos sentidos con un coche normal de cilindrada alrededor de 1.500 cm3. El coche conviene que esté dotado de "odómetro" y lleve suficiente personal para anotar los puntos kilométricos así como las velocidades al aproximarse a todos los tramos donde estas varíen y además en algunos tramos rectos. Conviene elegir el
principio de todos los tramos donde "a priori" se supone que puede ser necesario instalar barreras de seguridad.

A continuación es necesario comprobar como se ajusta la velocidad de este conductor con la que se ha definido, es decir, con la que solo es superada por el 15% de los usuarios. Para ello se eligen 3 o 4 puntos de comparación donde se mide la velocidad de al menos 100 vehículos (convendría que fueran más, a ser posible hasta 500) suprimiendo todos aquellos cuya velocidad se considere limitada debido al tráfico. Se calcula en cada punto la velocidad que es superada sólo por el 15% de los usuarios y se ve el % de aumento o disminución que esta velocidad representa con relación a la del conductor elegido. Se halla el valor medio de esta corrección para los 3 ó 4 puntos y se corrigen con éste valor medio todas las velocidades obtenidas por el conductor que se eligió para la prueba.

Para carreteras urbanas, semiurbanas o de la Red Arterial no conviene prescindir totalmente de la influencia del tráfico en la velocidad por lo que se hará la medición de ésta en un periodo diurno de poco tráfico pero sin eliminar los vehículos con ya velocidad está restringida por el que le precede.

3.3.2.2.- Peligrosidad de las curvas

<table>
<thead>
<tr>
<th>Coeficiente Fc Exterior de la curva</th>
<th>Coeficiente Fc Interior de la curva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recta o curva muy suave</td>
<td>1,00</td>
</tr>
<tr>
<td>Curva poco peligrosa</td>
<td>1,10</td>
</tr>
<tr>
<td>Curva peligrosa</td>
<td>1,25</td>
</tr>
<tr>
<td>Curva muy peligrosa</td>
<td>1,40</td>
</tr>
</tbody>
</table>

El criterio para determinar la peligrosidad de la curva depende del radio de ésta y sobre todo de la diferencia entre la velocidad normal de un vehículo al aproximarse a ella y la velocidad segura a que debe empezar a tomar la curva. Como orientación-
para fijar un criterio se da la siguiente:

Curva poco peligrosa — aquélla en la que los vehículos que se aproximan no precisan reducir su velocidad para tomarla.

Curva peligrosa — aquélla en la que los vehículos que se aproximan precisan reducir la velocidad en valores de hasta 20 km/h para tomarla.

Curva muy peligrosa — aquélla en la que los vehículos que se aproximan precisan reducir la velocidad en valores superiores a 20 km/h para tomarla.

Siempre que existan o se hayan incluido en el proyecto de construcción "curvas de transición" la peligrosidad fijada por el criterio anterior deberá rebajarse un grado, es decir si la curva está calcificada entre las muy peligrosas se le aplicará coeficiente 1,25; si es peligrosa coeficiente 1,10 y para los dos casos restantes coeficiente 1.

3.3.2.3. — Anchura del arco

Los valores del coeficiente Fa serán los siguientes:

<table>
<thead>
<tr>
<th>Anchura a</th>
<th>Coeficiente Fa</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > 2,5 \ m$</td>
<td>0,80</td>
</tr>
<tr>
<td>$2m < a < 2,5 \ m$</td>
<td>0,90</td>
</tr>
<tr>
<td>$1,5m < a < 2 \ m$</td>
<td>1,00</td>
</tr>
<tr>
<td>$1,0m < a < 1,5 \ m$</td>
<td>1,10</td>
</tr>
<tr>
<td>$a < 1,0 \ m$</td>
<td>1,15</td>
</tr>
</tbody>
</table>

NOTA — Como anchura de arco debe tomarse toda la correspondiente a la superficie sensiblemente horizontal que queda a la derecha del lugar que ocupa o debería ocupar la marca vial blanca de borde de calzada.
3.3.2.4. – Pendiente de la calzada

El valor que se tomará para el coeficiente F_c será el siguiente:

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>Coeficiente F_c bajando</th>
<th>Coeficiente F_c subiendo</th>
</tr>
</thead>
<tbody>
<tr>
<td>de 0 a 2%</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>de 2% a 5%</td>
<td>1,10</td>
<td>0,95</td>
</tr>
<tr>
<td>mayor de 5%</td>
<td>1,20</td>
<td>0,90</td>
</tr>
</tbody>
</table>

3.3.2.5. – Condiciones climáticas

El coeficiente F_t que deberá tomarse es el siguiente:

<table>
<thead>
<tr>
<th>Heladas</th>
<th>Coeficiente F_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>escasas</td>
<td>1,00</td>
</tr>
<tr>
<td>frecuentes</td>
<td>1,10</td>
</tr>
<tr>
<td>muy frecuentes</td>
<td>1,20</td>
</tr>
</tbody>
</table>

El criterio para definir los tres valores de las heladas será el siguiente:

escasas - Índice de helada inferior a 50
frecuentes - Índice de helada entre 50 y 90
muy frecuentes - Índice de helada superior a 90

Los valores del Índice de helada deberán tomarse del Mapa publicado por la División de Materiales de la Dirección General de Carreteras.

3.3.3. – Intensidad de tráfico (I.M.D.)

Para tener en cuenta la circulación se fijará un coeficiente de tráfico T según la fórmula:

$$ T = 0,8 + \sqrt{\frac{C}{100}} $$

$C = I.M.D.$ del año de proyecto. En carreteras con calzadas separadas o con más de 3 carriles se tomará solo la mitad de la I.M.D.
3.3.4.- Índice de necesidad total

El índice de necesidad total será por tanto:

\[N = I \times Fv \times Fc \times Fa \times Fp \times Ft \times T \]

Los valores de \(N \) que se obtengan son relativos y serán para comparar unos tramos con otros.

En ningún coeficiente deberán emplearse más de dos decimales y el valor de \(N \) se expresará siempre en números enteros despreciando los decimales.

En el cuadro número 1 se recoge un modelo para presentar las mediciones de los tramos de barreras de seguridad.
3.4.- OBRAS DE FÁBRICA

Si en una carretera se decide instalar barreras de seguridad para proteger a los vehículos en ciertos terraplenes, deben también instalarse pretiles o barreras de seguridad en todas las obras de fábrica de cierta importancia que no dispongan de esa protección.

Como no es posible comparar la necesidad de instalar barreras en un terraplén y en una obra de fábrica y, en general, esta última tiene preferencia, debe utilizarse para las barreras de seguridad en obras de fábrica el cuadro nº 2, en el que no se obtiene ningún índice.

Debe tenerse en cuenta que esta medición por obras de fábrica se refiere a los pretiles o las barreras de las propias obras, y no a la necesidad de proteger con barreras de seguridad los extremos iniciales de pretiles o barreras que ya existen en una obra de fábrica. Las barreras necesarias para proteger estos extremos iniciales se incluirán en el concepto de obstáculos fijos en el cuadro nº 3.

En el resumen de mediciones las barreras de obras de fábrica se considerarán aparte, pues convendrá generalmente que sean más rígidas que las restantes (ver capítulo de características técnicas) y en todo caso el coste unitario de su colocación debe ser mayor porque han de montarse cimentadas en la propia obra de fábrica y no en el terreno.
3.5. - OBSTÁCULOS FIJOS

El criterio para decidir cuando debe considerarse esta variable puede tomarse de acuerdo con la orientación que se da en el capítulo anterior (apartado 2.5.).

Para las mediciones de barreras destinadas a proteger a los usuarios del choque con obstáculos fijos se ha preparado el cuadro nº 3. En él se recogen el tipo y características del obstáculo, su situación tanto longitudinal como transversal con relación a la calzada, el tramo de barrera que se proyecta y la I,M,E de la carretera. En este caso no se obtiene ningún índice para evitar su comparación con el índice de necesidad en las márgenes cuya obtención responde a otros criterios.

De todos modos es preferible, no prodigar la colocación de barreras para proteger a los usuarios de los obstáculos y elegir solo los casos más peligrosos. Posteriormente en una segunda actuación podrá completarse esta protección para otros lugares menos peligrosos.

Hay que tener en cuenta que el tramo de barrera de seguridad que se coloque delante de un obstáculo tendrá generalmente mayor longitud que aquél y se dispondrá desfasado longitudinalmente en sentido opuesto al de la marcha (principio de la barrera bastante adelantado con relación al principio del obstáculo).

Un tramo aislado de barrera no debe tener una longitud inferior a unos 30 m y en carreteras rápidas este valor mínimo será aún mayor.
4.- CARACTERÍSTICAS TÉCNICAS

4.1.- CONSIDERACIONES GENERALES

Una vez decidida la conveniencia de instalar barreras de seguridad en un determinado tramo y margen de carretera, hay que elegir el tipo más apropiado. Asimismo, es necesario fijar con el mayor detalle los datos técnicos de su fabricación e instalación, porque pequeñas variaciones pueden tener una incidencia grande en la reducción de la gravedad de los accidentes.

Las barreras de seguridad utilizadas hasta el momento pueden clasificarse en los siguientes grandes grupos:

- Flexibles
- Semirrírigidas
- Rígidas
- Nuevos tipos

La primera variable que ha de tenerse en cuenta en la elección del tipo de barrera es el espacio de que se dispone para que la instalación pueda tomar flecha sin que caiga el vehículo como consecuencia de un impacto. Así en un puente la barrera de seguridad debe tener bastante rigidez pues si cede mucho el vehículo puede caer entre el borde del puente y la barrera deflectada.

Como simple orientación que puede servir para clasificar las barreras en función de su rigidez se dan a continuación valores máximos de las flechas que se producen ante impactos en los diversos tipos de barreras. Estos valores están obtenidos de ensayos y experiencias americanas. (H.R.B, 174, pág. 180) lanzando vehículos de 2.000 kg. de peso a 25° de inclinación y 100 km/h y por tanto solo de una manera relativa pueden tenerse en cuenta en España.
<table>
<thead>
<tr>
<th>Tipo de barrera</th>
<th>Máxima flecha observada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td>3,6 m</td>
</tr>
<tr>
<td>Perfil W (1)</td>
<td>2,4 m</td>
</tr>
<tr>
<td>Perfil W (mediana) (2)</td>
<td>2,1 m</td>
</tr>
<tr>
<td>Perfil metálico cerrado (postes a 1,8 m)</td>
<td>1,2 m</td>
</tr>
<tr>
<td>Perfil metálico cerrado (postes a 1,2 m)</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Perfil metálico cerrado mediana</td>
<td>0,6 m</td>
</tr>
<tr>
<td>Perfil de hormigón</td>
<td>0 m</td>
</tr>
</tbody>
</table>

(1) El poste utilizado en estas experiencias es una I de 75 mm que tiene un módulo resistente de 28 cm³ (la I de 14 tiene 82 cm³ y la I de 10 34 cm³).

(2) En medianas con una sola fila de postes, uniendo entre sí los dos perfiles la flecha será considerablemente menor.

4.2. BARRERAS FLEXIBLES

Las barreras de seguridad flexibles están constituidas por cables o mallas, generalmente de acero, sujetas a postes, por lo general, metálicos o de madera.

Las más frecuentes, que son de cables de acero, constan de 2 a 4 cables apoyados en postes y anclados a "muertos" de hormigón enterrados en el suelo.

En las figuras 2 y 3 se han dibujado dos ejemplos de barreras de seguridad de este tipo correspondiendo la primera al sistema de cables y la segunda al sistema mixto de cables y malla metálica. Las distancias de anclaje de los cables no deben ser superiores a unos 600 m.
En la figura 4 se dibuja un modelo de barrera flexible que ha sido muy utilizado en España en diversas variantes muy parecidas entre sí. La malla de esta barrera es muy flexible por lo que los vehículos tropiezan rápidamente con los postes. Si éstos son muy rígidos el impacto se parece mucho al choque con un obstáculo fijo. Lógicamente, por tanto, los postes conviene que sean débiles, por ejemplo de madera y no gruesos, pero entonces ante un impacto se romperán muchos y aparte del gasto de conservación, se necesita que la longitud de la instalación sea grande o que tenga sus extremos anclados. Sin embargo, para carreteras donde la velocidad no es alta esta barrera puede dar y de hecho ha dado buenos resultados.

La utilización de las barreras de seguridad flexibles no se ha extendido mucho, aunque todavía se siguen empleando, principalmente en Estados Unidos e Inglaterra.

Los principales inconvenientes que tienen estas barreras de seguridad son la gran flecha que se produce ante el impacto de un vehículo (valores normales de esta flecha superan los 3 m) y la dificultad y elevado coste de las reparaciones. Como contraposición su coste inicial es más bajo que en otros tipos de barreras.

4.3. - BARRERAS SEMIRRÍGIDAS

Las barreras de seguridad semirrígidas (ó semiflexibles) son, con mucho, las que más se han utilizado hasta el momento como defensas de carreteras.

Constan de un elemento continuo, generalmente de acero, que tiene rigidez propia, apoyado sobre postes de madera o metálicos que, a su vez, se hincan o empotran en el terreno, (en su caso estructura). Se han ensayado también barreras de seguridad de aluminio pero los resultados han sido generalmente peores que con acero.
La resistencia a flexión del elemento continuo, se agota pronto ante un impacto, quedando entonces resistiendo a tracción sujeto a los postes. Estos suelen deformarse e incluso desprenderse en las zonas próximas al impacto, pero la barrera de seguridad continúa resistiendo atirantada por los postes más alejados de uno y otro lado del punto de choque.

La rigidez de la instalación depende de los módulos resistentes de la propia barrera y de los postes, de la separación entre estos y del sistema de anclaje al terreno.

Hasta el momento casi todos los perfiles que se han venido utilizando son abiertos de una onda (que ya no se usa) o de dos ondas. En los últimos años, principalmente en Estados Unidos, se están utilizando también perfiles cerrados.

4.3.1.- Barreras semirrígidas de perfil abierto

En la figura 5 se han dibujado 8 ejemplos de otros tantos perfiles abiertos utilizados en diversos países. Se indican también en la figura características técnicas de estos perfiles y de los postes de sujección. De todos ellos el perfil más utilizado en todo el mundo es el primero, que fue desarrollado en Estados Unidos por el "Bureau of Public Roads" en colaboración con empresas metálicas hace ya muchos años (perfil AASHO-M-180-60). Este perfil es de libre fabricación en todas partes, incluso en Estados Unidos, país que lo inventó. Sin embargo en España, incomprensiblemente, está sujeto a patente.

Este tipo de barreras de seguridad ha sido el más ensayado hasta el momento. Los ensayos han consistido en lanzar vehículos sobre ellas a distintas velocidades y ángulos de incidencia. Ensayos de este tipo se han realizado en Estados Unidos, Francia, Alemania, Inglaterra, Holanda, Suiza y Japón, entre otros países. De -
estos ensayos se ha deducido una serie de características y detalles técnicos que mejoran sensiblemente el comportamiento de la barrera de seguridad, disminuyendo la gravedad de los accidentes. Estos detalles han sido también recogidos en las recomendaciones que el grupo de expertos de la O.C.D.E. ha publicado, como resumen de su investigación, en el documento "Research on crash barriers" PARIS diciembre 1.967.

Las características técnicas que a continuación se van a indicar se aplican a todos los perfiles metálicos abiertos montados sobre postes de madera o metálicos.

4.3.1.1. Perfiles abiertos en medianas

En las medianas estrechas y, siempre que sea posible, también en las medianas anchas, las barreras de seguridad semirrígidas deben colocarse con una sola hilera de postes y un perfil por cada lado.

Los perfiles deben estar separados de los postes mediante unas piezas que los aparten al menos 20 cm. por cada lado.

Los dos perfiles deben estar unidos en sus caras posteriores por una pieza intermedia entre dos postes o, en su defecto, arriostados por una cruz de San Andrés.

Aunque la mediana sea relativamente ancha, (siempre que sea conveniente instalar barreras de seguridad) si los taludes de los terraplenes de la mediana no requieren la instalación de barreras, según los criterios del apartado 2.3, es preferible colocar una sola fila de postes con dos perfiles (uno por cada lado) lo más alejada posible de la calzada (próxima al centro de la mediana) ya que la misión de la instalación no es impedir el acceso de los vehículos a la mediana sino a la calzada de sentido opuesto.
Los dos perfiles pueden abrirse y apoyarse en dos filas de postes para englobar algún soporte rígido u obstáculo fijo que pueda existir en la mediana.

Cuando se instalen barreras de seguridad semirrígidas, debe suprimirse el bordillo en el borde de la calzada o arcén, pues podría servir de trampolín para que los vehículos saltasen por encima de aquélla.

Para disminuir la deceleración producida por el impacto en los ocupantes de los vehículos se ha comprobado que es conveniente reducir el tamaño de los postes. Hasta hace poco se habian venido usando sobre todo postes IPN 14 de acero $W_x = 82 \text{ cm}^3$. Sin embargo se recomienda emplear postes IPE 10 (perfil Europa) ó IPN 10 de acero que tienen un módulo resistente de sólo 34 cm3.

Para medianas no muy estrechas (por encima de los 3 m entre líneas blancas de borde de ambas calzadas) esta solución de postes más débiles es sin duda mejor. Para medianas más estrechas puede existir algún reparo porque con postes más débiles lógicamente aumentará la flecha que se produce en la instalación ante un impacto, pero, sin embargo, en Alemania, donde han estudiado detalladamente este problema, se ha llegado a la conclusión de colocar siempre postes IPE 10 (perfil Europa) ($W_x = 34 \text{ cm}^3$) o IPN 10 sin que se haga distinción entre las medianas muy estrechas y las demás.

En resumen, en las medianas se recomienda utilizar siempre postes IPE 10 ó IPN 10 cuando hay un perfil por cada lado, pero en los puntos expuestos a choques más violentos o con ángulo mayor, como por ejemplo curvas pronunciadas, (radio inferior a unos 75 m) -- disminuir la separación normal de los postes desde 4 m a 2 m.

En las figuras 6, 7, y 8 se ha dibujado un ejemplo de barrera de seguridad en la mediana, desarrollado, ensayado y probado con éxito en Alemania.
La altura de colocación de la barrera debe ser tal que el eje del perfil esté entre 55 y 60 cm del suelo (la altura que se recomienda para el bordé superior es de 70 a 75 cm).

Los extremos iniciales y finales de los tramos de barrera de seguridad deben tratarse de manera análoga a la descrita en el apartado siguiente 4.3.1.2., al hablar de perfiles abiertos en las márgenes de la carretera.

4.3.1.2. Perfiles abiertos en las márgenes

Para aumentar la eficacia (disminuir la gravedad de los accidentes) de las barreras de seguridad semirrígidas de perfil abierto colocadas en las márgenes de la carretera, deben proyectarse con las siguientes características:

1°. Pieza separadora. Las barreras deben estar separadas de los postes, por medio de unas piezas, por lo menos 20 cm. La misión de estas piezas es amortiguar el impacto, disminuir el peligro de que el vehículo quede detenido instantáneamente en el poste y lograr que el centro de gravedad de la barrera suba ligeramente después del impacto, con lo que es menor la probabilidad de que el vehículo salte por encima.

Son muy variados los diseños de las piezas separadoras usadas y los estudios realizados hasta el momento no permiten asegurar plenamente la mayor eficacia de uno u otro tipo. Uno de los sistemas más empleados ha consistido en un paralelepípedo de madera, sujeto al poste por un extremo y al que se sujeta el perfil por otro.

En las figuras 9 y 10 se han dibujado 2 ejemplos de piezas separadoras metálicas.

2°. La altura de la barrera de seguridad que se ha venido colocando a unos 45 cm (eje) del suelo, conviene elevarla hasta valores de 50 a 55 cm (eje, es decir, el extremo superior de la barrera debe estar de 65 a 70 cm del suelo.
La razón principal de esta elevación ha sido lograr centros de gravedad más altos para que disminuya el peligro de que el vehículo salte por encima de la barrera.

39. Los postes no deben ser excesivamente rígidos. Se recomienda utilizar postes IPE 10 (perfil Europa \(W_x = 34 \text{ cm}^3 \)), o a lo sumo IPE o IPN 12 (módulo resistente 53 \(\text{cm}^3 \)). En puentes y pasos superiores donde se instale este tipo de barrera puede convenir utilizar postes más rígidos (IPN 14).

Los motivos principales por los que debe reducirse la sección del poste son en primer lugar aumentar la flexibilidad de la instalación, es decir, disminuir la deceleración que se produce en el vehículo y, en segundo lugar, disminuir la probabilidad de que se produzca el efecto "bolsa".

40. Los extremos iniciales de la barrera de seguridad deberán bajarse y anclarse en un macizo de hormigón que no sobresalga del terreno. Asimismo los extremos finales convendrá anclarlos bajándolos como los iniciales o atirantarlos mediante un cable, a un macizo de hormigón.

La razón de estas medidas es evitar el choque frontal de los vehículos contra el principio de la barrera, y lograr además que, en los primeros y últimos vanos de cada tramo, la instalación tenga mayor rigidez longitudinal, haciendo que su resistencia sea similar a la de los vanos centrales y no pueda formarse así, en los vanos extremos, el efecto "bolsa".

En la figura 11 se ha dibujado un ejemplo de anclaje del extremo inicial de la barrera de seguridad. La misma solución puede emplearse para el extremo final, aunque ésta puede consistir también en un cable que atirante el último poste a un "muerto" de hormigón.
5. - Anclaje de los postes en el terreno

Los sistemas más frecuentemente utilizados son los 3 que a continuación se describen:

a) Hincado de los postes. Se necesita disponer de la maquinaria precisa y que el terreno lo permita. La longitud del poste que queda bajo el terreno no debe ser inferior a 1,00 m.

b) Embebido en un macizo de hormigón. Como orientación de las dimensiones de aquél, se pueden dar: sección cuadrada de 40 ó 50 cm de lado y profundidad de 75 cm (ver figura 10). Cuando el poste haya de colocarse sobre una estructura de hormigón o de hierro puede servir cualquier sistema que lo ancle bien a la estructura.

c) Anclado directamente en el terreno. En este caso la longitud del poste que está bajo el terreno debe ser, al menos de 1 m. Además se debe soldar al poste una placa para aumentar el empuje pasivo sobre el terreno (ver figura 4) y éste debe estar bien compactado alrededor del poste.

Hay otros sistemas de anclaje del poste al terreno, que pueden resultar convenientes, pero, por el momento, no existen suficientes ensayos y experiencias que permitan aconsejar definitivamente su empleo.

En la figura 14 se han dibujado dos ejemplos de otros tantos sistemas nuevos de anclaje. El primero se ha utilizado en Holanda y el segundo en Suiza.
4.3.2.- Barreras semirrígidas de perfil cerrado

Durante los últimos años se han venido utilizando en Estados Unidos, con buenos resultados, barreras de seguridad semirrígidas de perfil cerrado.

La idea básica de estas barreras es buscar un elemento - (el perfil) con gran resistencia a flexión apoyado sobre postes débiles y próximos unos de otros. De esta forma ante un impacto los postes próximos al mismo se deforman, pero el elemento contínuo resiste a flexión y tracción apoyado en los postes más alejados de uno y otro lado del punto de impacto.

Con este tipo de barreras se consiguen unas flechas muy pequeñas ante un impacto, pero tienen el gran inconveniente de su coste que es extremadamente alto, (un metro lineal del perfil más frecuentemente utilizado de sección cuadrada hueca 150 x 150 x 4,5 pesa unos 21 kg. mientras que el perfil normal abierto de doble onda pesa unos 12 kg.).

En la figura 13 se ha dibujado una barrera de seguridad de este tipo.

4.4.- BARRERAS RÍGIDAS

Las barreras de seguridad rígidas son las primeras de fensas que se han utilizado en carreteras. Tal es el caso de los pretiles de puentes y carreteras de montaña, construidos generalmente con hormigón o mampostería.

La principal ventaja de estas barreras de seguridad es su gran duración y su facilidad de conservación. Tienen el inconveniente de no deformarse y por tanto, no absorber energía durante los
impactos, con lo que el daño producido en los vehículos y, por consecuencia, en sus ocupantes, suele ser mayor que en otras barreras no rígidas, sobre todo para ángulos de choque elevados.

Podemos distinguir dos tipos de barreras rígidas. En el primero se incluyen las barreras bajas y de apoyos discontinuos—y en el segundo las barreras altas contínuas que son en realidad pretiles.

En la figura 14 se han dibujado 3 tipos de estas barreras bajas y de apoyos discontinuos utilizados en Europa. Corresponden a los modelos TRIEF (apoyo contínuo), DAV (apoyo discontinuo) y SERGAD (apoyo discontinuo) todos ellos sujetos a patente.

Estas barreras de seguridad se han ensayado por organismos oficiales en Francia, Alemania, Inglaterra y Holanda. No se tiene conocimiento de que hayan sido ensayadas por organismos oficiales de otros países.

Los ensayos han consistido en lanzar vehículos contra las barreras de seguridad a diferentes velocidades y ángulos de impacto y observar su comportamiento.

Los resultados de los ensayos realizados en los 4 países coinciden en afirmar que este tipo de barreras de seguridad no debe utilizarse para carreteras con altas velocidades específicas. A esta conclusión ha llegado también el grupo de expertos sobre barreras de seguridad de la O.C.D.E. en su informe final.

En consecuencia, en relación con estas barreras de seguridad bajas rígidas y de apoyos discontinuos de hormigón, deberá tenerse en cuenta lo siguiente:

1º. No deberán utilizarse en autopistas
2º. No deberán utilizarse en tramos de carreteras cuya velocidad específica sea superior a 60 km/h.
3°.- Podrán utilizarse en lugares donde se produzcan choques poco violentos a ángulos inferiores a 20°. Tal es el caso, por ejemplo, de una circulación urbana lenta y canalizada, o una curva pronunciada de una carretera a la que se llega a velocidad baja.

En cuanto a las barreras de seguridad altas y rígidas (de hormigón) tienen una aplicación limitada a puentes y pasos superiores de carreteras importantes, donde se trata de evitar, ante todo, que el vehículo pueda caer por el borde del puente.

En la figura 15 se han dibujado 2 ejemplos de estas barreras de seguridad (pretil) que se han ensayado y utilizado con éxito principalmente en Estados Unidos y en Canadá.

En los puentes y pasos superiores la elección del tipo de barrera de seguridad presenta unos problemas distintos a los del caso de márgenes e incluso medianas. Ante todo hay que lograr que los vehículos no caigan por el puente. En segundo lugar habrá que tratar de que se produzcan el menor daño posible durante el impacto. Como el espacio de que dispone la barrera para tomar la flecha es muy pequeño, se necesita que su rigidez sea muy grande, aun a costa de aumentar la gravedad del choque.

Por ello lo más conveniente para un puente o paso superior es una barrera de seguridad alta y rígida (pretil) y en su defecto una barrera semiflexible de bastante rigidez. Entre las semiflexibles son preferibles por su alta rigidez los perfiles cerrados y robustos de sección circular, elipsoidal, etc. Cuando esto no sea posible puede utilizarse la barrera de doble onda de perfil abierto pero conviene que la rigidez de la instalación sea superior a la normal. Para ello pueden usarse postes de mayor módulo resistente (por ejemplo IPN 14), espaciamiento más próximo (2m en vez de 4m), colocación de dos perfiles superpuestos, etc. En cualquier caso es muy conveniente anclar ambos extremos del perfil el inicial y el final, pues esta medida disminuye bastante la flecha que puede produ
cien el impacto.

Debe tenerse siempre presente que en la gran mayoría de las carreteras con poco tráfico y velocidad real relativamente baja, como las carreteras de montaña, la solución clásica de pretiles de mampostería u hormigón es poco costosa y puede ser la más aconsejable. Conviene sin embargo proyectarlos de modo que ofrezcan una superficie continua al choque de los vehículos (las aberturas para desagües deben hacerse en la parte inferior) y que esta superficie carezca de entrantes y salientes pronunciados. De este modo se consigue que la detención del vehículo sea paulatina y por tanto que la deceleración no sea muy grande.

4.5.- NUEVOS TIPOS DE BARRERAS DE SEGURIDAD

Como la barrera de seguridad perfecta no existe ni parece fácil lograrla, constantemente están apareciendo nuevos diseños de barreras o simples elementos de la instalación con el fin de mejorar su comportamiento. Es muy difícil valorar la eficacia de estas innovaciones basándose en los razonamientos técnicos, no siempre económicamente desinteresados, de los que patrocinan la innovación, porque al final del estudio se llega al análisis de lo que ocurre durante un impacto y este problema está aún sin resolver. Sin embargo es muy importante conocer estas innovaciones y sobre todo estudiar toda la información posible que pueda existir de su comportamiento ante impactos, principalmente los ensayos a escala natural realizados por organismos oficiales.

Para dar una idea del campo tan amplio que aún queda a la investigación sobre barreras de seguridad se han dibujado dos ejemplos de versiones relativamente recientes de barreras de seguridad que, como puede observarse, se apartan bastante de los modelos que podrían considerarse ya como clásicos.
La primera (figura 16) corresponde a la barrera de seguridad VIAVINI instalada en un tramo de autopista italiana. Esta barrera corresponde a las llamadas de inercia porque consiste en una serie de bloques o bordillos de hormigón sueltos, apoyados directamente en el suelo, sin ningún anclaje, resistiendo únicamente por rozamiento. Para mantener los bloques unidos entre sí se atirantan mediante unos cables que permiten, sin embargo, la rotación de dos bloques consecutivos. Ante un impacto la barrera se deforma pero los bloques se mantienen unidos por efecto de los tirantes.

En la figura 17 se ha representado un "colchón modular de impactos" que se ha utilizado con ventaja para proteger a los vehículos del impacto con un obstáculo fijo situado en posición tal que la probabilidad de choque es muy alta. En esencia aconsiste en un conjunto de bidones vacíos que se mantienen unidos atirantándolos—con una pletina de acero y tienen por misión deformarse, absorbiendo con esta deformación gran parte de la energía que se produce en el impacto.
REFERENCIAS

- Highway Research Board - Special Report 81 - Highway Guardrail-1964
- Highway Research Record n° 83 - Geometric Design, Barrier Rails -1965
- Anfahrversuche an Mechanischen Leitelinrichtungen, Strassen Verkehrs Technik, Dezember 1967
- Highway Research Record n° 174 - Guardrails an Sign Supports- 1967
- Highway Research Record n° 152 - Geometric Design, Barrier Rails and Sign Supports - 1967
- Highway Research Record n° 222 - Guardrails, Median Barriers and Sign and Light Supports 1968
- Moniteur des Travaux Publics et du Bâtiment - 24 Agosto 1968
- Recent developments in barrier designs - R.L. Moore y Y.J. Jehn - "Traffic Engineering and Control" - Diciembre 1968
- Progrès dans le domaine des glissières de sécurité J.Leroy - "Routes" Febrero 1969
- Highway Safety - Special Report 107-1970
- Highway Research Record n° 306 - 1970 - Protective Barrier Systems
- Roadside safety structures - Institute for Road Safety Research - La Haya - Países Bajos 1970
- Barriere di sicurezza sullo spartitraffico - "Autostrade" Marzo 1970
- Lo spartitraffico nello strade a doppia carreggiata e il costo della sicurezza - G. Centolani "Strade e Traffico" - Abril 1970
Barreras de Seguridad

Marginantes de la Calzada

Para las barreras de seguridad en obras de fábrica ver el cuadro n° 2
Para las barreras de seguridad destinadas a amortiguar el choque con obstáculos fijos ver el cuadro n° 3

<table>
<thead>
<tr>
<th>MEDICIÓN</th>
<th>GRAVEDAD ACCIDENTE</th>
<th>PROBABILIDAD DE SALIDA</th>
<th>TRÁFICO</th>
<th>ÍNDICE TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.K.</td>
<td>(1)</td>
<td>A</td>
<td>(2)</td>
<td>MARGEN</td>
</tr>
<tr>
<td>P.K.</td>
<td>P.K.</td>
<td>KM/h</td>
<td>(7)</td>
<td>(8)</td>
</tr>
</tbody>
</table>

1. Aproximado hasta metros enteros
2. Derecha o izquierda en el sentido circunferencial de los Km.
3. Debe ser múltiple de 4 metros
4. Distancia horizontal: altura en vertical, expresado en unidades y un decimal
5. Se tomará la altura media de posible caída del vehículo
6. Para los puntos situados debajo de la curva 1 = 100 de la Fig. 1 no deben instalarse barreras (Ver epígrafe 2.3)
7. La que solo se superada por el 15% de los usuarios, aproximada en múltiplos de 10
8. En la que sea un tramo recto o el interior de una curva poner un guión
9. Indicar si está expresado en unidades enteras con un decimal
10. Indicar el ancho en metros expresado en unidades enteras con un decimal
11. Sí, se indica subiendo y bajando, al circular por el carril contiguo a la barrera
12. Índice de hechidas según datos de la División de Materiales
13. Tanto el coeficiente F como los Pk a Pp deberán tomar con 2 decimales como máximo
14. Del último año que se posean datos oficiales. Cuando se trate de calzadas separadas o de más de 3 carriles deberá tomar solo la mitad de la I.M.D.
15. En unidades enteras y decimales, con un máximo de dos
BARRERAS DE SEGURIDAD

OBRAS DE FABRICA

(Cuando no posean pretils ni defensas metálicas suficientemente rígidas)
No deben incluirse aquí las barreras que protegen del choque contra pretils

<table>
<thead>
<tr>
<th>CLASE DE OBRA (1)</th>
<th>OBRA DE FABRICA</th>
<th>MARGEN (3)</th>
<th>BARRERA</th>
<th>ALTURA (5) DE CAIDA VEHICULOS</th>
<th>I.M.D. (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>De (4) P.K.</td>
<td>A P.K.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Puente, tajea, paso inferior, muro de hormigón etc.
(2) Aproximado hasta metros enteros
(3) Derecha o izquierda en el sentido creciente de los Km
(4) Si la barrera no es rígida comenzará antes de la obra de fábrica
(5) Desde el pavimento al fondo del cauce o camino
(6) Del último año conocido. Si se trata de calzadas separadas o de más de 3 carriles debe tomarse sólo la mitad de la I.M.D.
BARRERAS DE SEGURIDAD

OBSTÁCULOS FIJOS (Deben proyectarse con un criterio mucho más restrictivo que en las obras de fábrica)

<table>
<thead>
<tr>
<th>TIPO DE OBSTÁCULO</th>
<th>MATERIAL</th>
<th>SITUACIÓN</th>
<th>MARGEN</th>
<th>DISTANCIA AL BORDE</th>
<th>DIMENSION TRANSVERSAL</th>
<th>BARRERA</th>
<th>I.M.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
</tbody>
</table>

(1) principio de pretil, hastial, señal, poste, árbol, edificio, etc.
(2) hormigón, mampostería, acero, madera, roca, etc
(3) aproximado hasta metros enteros
(4) derecha o izquierda en el sentido creciente de los Km
(5) distancia entre la cara más próxima a la calzada y la línea blanca (real o teórica) de borde de este
 Cuando represente un estrechamiento de la propia calzada indicar la distancia con signo negativo.
(6) en cm medidos perpendicularmente al eje de la calzada
(7) el principio de la barrera no coincidirá con el del obstáculo sino que estará adelantado
(8) del último año conocido. Si se trata de calzadas separadas o de más de 3 carriles debe tomarse sólo la mitad de la I.M.D.
Índice de necesidad de barreras de seguridad

Por debajo de $I=100$ no deben instalarse

Figura 1
PERFIL I 75x60 (MÓDULO RESISTENTE 28 CM²)
EQUIVALE APROX A 2 PN 10 (MÓDULO RESISTENTE 34 CM²)

CABLES 3/4"

SECCION A-A

CHAPA SOLDADA AL POSTE 600x200x6

SEPARACION DE POSTES
VARIABLE DE 1 M A 4 M DESDE CURVAS DE 15 M DE RADIO HASTA RECTAS.

BARRERA DE SEGURIDAD FLEXIBLE: CABLES

FIGURA 2
LA SEPARACION ENTRE POSTES ES DE 2.40 m.
EJEMPLO DE BARRERA DE SEGURIDAD FLEXIBLE UTILIZADA EN ESPAÑA

(PLANO DE LA J.P.C. DE TOLEDO)

FIGURA 4
BARRERAS DE SEGURIDAD SEMIRIGIDAS

PERFILES ABIERTOS MAS COMUNES

<table>
<thead>
<tr>
<th>TIPO</th>
<th>PERFIL "A" USA</th>
<th>USA</th>
<th>USA +</th>
<th>FRANCIA</th>
<th>AUSTRIA</th>
<th>JAPÓN</th>
<th>SUECIA</th>
<th>INGLATERRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONES (Cms)</td>
<td>9,25</td>
<td>7,6</td>
<td>7,6</td>
<td>6,5</td>
<td>4,5</td>
<td>6,5</td>
<td>4,5</td>
<td>3,5</td>
</tr>
<tr>
<td>LONGITUD TRAMO (m)</td>
<td>4,10</td>
<td>3,80</td>
<td>3,40</td>
<td>4PC</td>
<td>4,10</td>
<td>4,23</td>
<td>3</td>
<td>3,50</td>
</tr>
<tr>
<td>DISTANCIA ENTRE POSTES (m)</td>
<td>3,80 0,1,9</td>
<td>3,80 0,1,9</td>
<td>3,00 0,1,5</td>
<td>4</td>
<td>3,8</td>
<td>4</td>
<td>3</td>
<td>3,20</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>SAE 1010</td>
<td>1010</td>
<td>1010</td>
<td>9137</td>
<td>9170</td>
<td>JISG 3101</td>
<td>3137</td>
<td>2,53 15</td>
</tr>
<tr>
<td>ESPESOR mm</td>
<td>2,7</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
<td>3</td>
<td>3</td>
<td>3,2</td>
</tr>
<tr>
<td>PESO Kg/m</td>
<td>10,3</td>
<td>13,2</td>
<td>9,7</td>
<td>12,6</td>
<td>11,2</td>
<td>11,8</td>
<td>10,98</td>
<td>20,32</td>
</tr>
<tr>
<td>MODULO RESISTENTE</td>
<td>22,46</td>
<td>25,07</td>
<td>19,83</td>
<td>25,24</td>
<td>29,82</td>
<td>30,57</td>
<td>30,15</td>
<td>10,98</td>
</tr>
<tr>
<td>POSTES</td>
<td>MADERA</td>
<td>CIRCULAR</td>
<td>METALICO</td>
<td>RECTANGULAR METALICO</td>
<td>CIRCULAR METALICO</td>
<td>RECTANGULAR HORMIGON</td>
<td>CUADRANGULAR MADERA</td>
<td></td>
</tr>
<tr>
<td>20 cm CUADRADO O CIRCULAR</td>
<td>IGUAL QUE PERFIL A</td>
<td>IGUAL QUE PERFIL A</td>
<td>20x18,5 cm HORMIGON</td>
<td>20x18,5 cm HORMIGON</td>
<td>20x18,5 cm HORMIGON</td>
<td>20x18,5 cm HORMIGON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPN 10 a EPN 14 EN EUROPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114 mm, ESPESOR 4,5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMENTARIOS</td>
<td>MUY USADA TAMBIEN EN EUROPA, CONOCIDO COMO PERFIL B</td>
<td>USADA EN EUROPA COMO PERFIL B</td>
<td>USADA SOLO EN EL PAIS DE ORIGEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 5
BARRERA DE SEGURIDAD SEMIRIGIDA

EJEMPLO DE INSTALACIÓN EN MEDIANA (1)

DISTANCIA ENTRE PIEZAS SEPARADORAS 2 m.
DISTANCIA ENTRE POSTES 4 m.

FIGURA 6
BARRERA DE SEGURIDAD SEMIRIGIDA
PIEZA SEPARADORA
EJEMPLO DE INSTALACION EN MEDIANA (2)

ALZADO

SECCION A-A'

PLANTA

DISTANCIA ENTRE PIEZAS SEPARADORAS 2 M.
EN LAS PIEZAS SEPARADORAS INTERMEDIAS EL PERFIL ES CONTINUO, SIN LA RAJURA CENTRAL PARA LA INSERCION DEL POSE
BARRERA DE SEGURIDAD SEMIRIGIDA

EJEMPLO DE INSTALACIÓN EN MEDIANA (3)

SECCIÓN A-A'

PLANTA

ALZADO

PIEZA DE ANCLAJE AL POSTE

FIGURA 8
ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

APROX. 854 (2 PERFILES Y 1 TERMINAL)

ANCLAJE 8Ø 20 DE 50 CM LONGITUD

PERFIL GIRADO 90°

RETRANQUEO 15 CM

COTA DEL BORDE DEL ARCENO DEL TERRENO
SI LA BARRERA ESTÁ MAS RETIRADA

VER DETALLE A

EJE DEL MACIZO DE ANCLAJE

8Ø 20 DE 50 CM. LONGITUD SOLDADOS A LA PLETINA

PLETINA DE 70X70X6

TALUD DEL TERRENO

ESTAS PAREDES PUEDEN SER VERTICALES
CUANDO SE HORMIGONE DIRECTAMENTE SIN ENCOFRADO

NOTA.- SIRVE TAMBIÉN PARA EL EXTREMO FINAL

FIGURA II
BARRERAS DE SEGURIDAD SEMIRRIGIDAS
SISTEMAS ESPECIALES DE ANCLAJE POSTE-TERRENO

Figura 12
BARRERAS DE SEGURIDAD SEMIRRIGIDAS
EJEMPLO DE PERFIL CERRADO (Separación normal del poste 1.80 m.)

FIGURA 13
<table>
<thead>
<tr>
<th>TIPO</th>
<th>DINAMARCA</th>
<th>BELGICA</th>
<th>ITALIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONES</td>
<td>3,9 m.</td>
<td>0,9 m.</td>
<td>2,54 m.</td>
</tr>
<tr>
<td>3,9 m.</td>
<td>4,0 m.</td>
<td>2,54 m.</td>
<td></td>
</tr>
</tbody>
</table>

LONGITUD DE CADA PIEZA O TRAMO
- DINAMARCA: 3,9 m.
- BELGICA: 0,9 m.
- ITALIA: 2,54 m.

DISTANCIA ENTRE POSTES
- DINAMARCA: 4,0 m.
- BELGICA: 2,54 m.
- ITALIA: 2,54 m.

METODO DE UNION
- DINAMARCA: PLETINA DE ACERO Y TORNILLO SITUADOS EN ENTRANTES EN LOS EXTREMOS DE LA VIGA.
- BELGICA: LAS JUNTAS SE SOLAPAN SOBRE EL BLOQUE DE APOYO CON JUNTA TRANSVERSAL ESCALONADA.
- ITALIA: HORMIGON ARMADO.

POSTES
- DINAMARCA: HORMIGON ARMADO.
- BELGICA: HORMIGON ARMADO.
- ITALIA: HORMIGON ARMADO.

DISPOSITIVOS DE MONTAJE
- DINAMARCA: LAS BARRAS DE LA ARMADURA DE LOS POSTES SE SUBEN Y ANCLAN EN LA VIGA.
- BELGICA: EL BORDILLO SE MONTA DIRECTAMENTE SOBRE EL BLOQUE DE APOYO, ANCLANDOLO CON PASADORES Ø12 DE ACERO.
- ITALIA: HORMIGON ARMADO.
BARRERAS DE SEGURIDAD RIGIDAS ALTAS DE HORMIGON
EJEMPLO PARA PUENTE O PASO SUPERIOR

FIGURA 15
COLCHON MODULAR DE IMPACTOS

ESQUEMA DE UN IMPACTO

1. PRIMER CONTACTO

2. APLASTAMIENTO DE LA 1ª Fila DE BLOQUES

3. APLASTAMIENTO DE LAS 3 PRIMERAS FILAS.

4. EL APLASTAMIENTO CONTINúa HASTA QUE TOSa LA ENERGÍA CINÉTICA DEL VEHÍCULO SE ABSORBE POR DEFORMACIÓN DE LOS BLOQUES

FICURA 17
NOTA DE SERVICIO

La Dirección General de Tráfico ha remitido un escrito a esta Dirección General, acompañando informes de cuatro accidentes de circulación, en los que el vehículo se salió de la calzada y quedó incrustado en la barrera de seguridad, que no tenía su iniciación acondicionada para amortiguar este impacto.

Se adjunta fotocopia de las páginas 32 a 35 de las "Normas sobre barreras de seguridad" (O.C. 229/71) donde se indica en la página 33, punto 4º y se dibuja en la figura 11, un ejemplo de tratamiento de estos extremos iniciales.

Es conveniente que por parte de esa Demarcación se prepare el acondicionamiento de los extremos iniciales de las barreras que no estén actualmente acondicionados, siendo conveniente incluir también los extremos finales sobre todo cuando existe una curva a la izquierda para los vehículos que circulan por el carril más alejado de la barrera.

Asimismo sería conveniente que se realizase el anclaje a los pretiles de los puentes de los extremos de la barrera que quedan interrumpidos al llegar a ellos, para evitar que un vehículo pueda encauzarse a chocar frontalmente contra el pretile.

Las obras que se realicen como consecuencia de esta NOTA pueden incluirse en conservación con medios propios o si su presupuesto lo justifica solicitando una Orden de Estudio para redactar un proyectos de Seguridad Vial.

Madrid, 20 de Mayo de 1.987
EL SUBDIRECTOR GENERAL.
La altura de colocación de la barrera debe ser tal que el eje del perfil esté entre 55 y 60 cm del suelo (la altura que se recomienda para el borde superior es de 70 a 75 cm).

Los extremos iniciales y finales de los tramos de barrera de seguridad deben tratarse de manera análoga a la descrita en el apartado siguiente 4.3.1.2., al hablar de perfiles abiertos en las márgenes de la carretera.

4.3.1.2.- Perfiles abiertos en las márgenes

Para aumentar la eficacia (disminuir la gravedad de los accidentes) de las barreras de seguridad semirrígidas de perfil abierto colocadas en las márgenes de la carretera, deben proyectarse con las siguientes características:

1°.- Pieza separadora. Las barreras deben estar separadas de los postes, por medio de unas piezas, por lo menos 20 cm. La misión de estas piezas es amortiguar el impacto, disminuir el peligro de que el vehículo quede detenido instantáneamente en el poste y lograr que el centro de gravedad de la barrera suba ligeramente después del impacto, con lo que es menor la probabilidad de que el vehículo salte por encima.

Son muy variados los diseños de las piezas separadoras --usadas y los estudios realizados hasta el momento no permiten asegurar plenamente la mayor eficacia de uno u otro tipo. Uno de los sistemas más empleados ha consistido en un paralelepípedo de madera, sujetado al poste por un extremo y al que se sujeta el perfil por otro.

En las figuras 9 y 10 se han dibujado 2 ejemplos de piezas separadoras metálicas.

2°.- La altura de la barrera de seguridad que se ha venido colocando a unos 45 cm (eje) del suelo, conviene elevarla hasta valores de 50 a 55 cm (eje, es decir, el extremo superior de la barrera debe estar de 65 a 70 cm del suelo.
La razón principal de esta elevación ha sido lograr centros de gravedad más altos para que disminuya el peligro de que el vehículo salte por encima de la barrera.

3°.- Los postes no deben ser excesivamente rígidos. Se recomienda utilizar postes IPE 10 (perfil Europa $W_x = 34 \text{ cm}^3$), o al sumo IPE o IPN 12 (módulo resistente 53 cm3). En puentes y pasos superiores donde se instale este tipo de barrera puede convenir utilizar postes más rígidos (IPN 14).

Los motivos principales por los que debe reducirse la sección del poste son en primer lugar aumentar la flexibilidad de la instalación, es decir, disminuir la deceleración que se produce en el vehículo y, en segundo lugar, disminuir la probabilidad de que se produzca el efecto "bolsa".

4°.- Los extremos iniciales de la barrera de seguridad deberán bajarse y anclarse en un macizo de hormigón que no sobresalga del terreno. Asimismo los extremos finales convendrá anclarlos bajándolos como los iniciales o atirantarlos mediante un cable, a un macizo de hormigón.

La razón de estas medidas es evitar el choque frontal de los vehículos contra el principio de la barrera, y lograr además que, en los primeros y últimos vanos de cada tramo, la instalación tenga mayor rigidez longitudinal, haciendo que su resistencia sea similar a la de los vanos centrales y no pueda formarse así, en los vanos extremos, el efecto "bolsa".

En la figura 11 se ha dibujado un ejemplo de anclaje del extremo inicial de la barrera de seguridad. La misma solución puede emplearse para el extremo final, aunque ésta puede consistir también en un cable que atirante el último poste a un "muerto" de hormigón.
5°.- Anclaje de los postes en el terreno

Los sistemas más frecuentemente utilizados son los 3 que a continuación se describen:

a) Hincado de los postes. Se necesita disponer de la maquinaria precisa y que el terreno lo permita. La longitud del poste que queda bajo el terreno no debe ser inferior a 1,00 m.

b) Embebido en un macizo de hormigón. Como orientación de las dimensiones de aquél, se pueden dar: sección cuadrada de 40 ó 50 cm de lado y profundidad de 75 cm (ver figura 10). Cuando el poste haya de colocarse sobre una estructura de hormigón o de hierro puede servir cualquier sistema que lo ancle bien a la estructura.

c) Anclado directamente en el terreno. En este caso la longitud del poste que está bajo el terreno debe ser, al menos de 1 m. Además se debe soldar al poste una placa para aumentar el empuje pasivo sobre el terreno (ver figura 4) y éste debe estar bien compactado alrededor del poste.

Hay otros sistemas de anclaje del poste al terreno, que pueden resultar convenientes, pero, por el momento, no existen suficientes ensayos y experiencias que permitan aconsejar definitivamente su empleo.

En la figura 14 se han dibujado dos ejemplos de otros tantos sistemas nuevos de anclaje. El primero se ha utilizado en Holanda y el segundo en Suiza.
ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA

ALZADO

BARRERA DE SEGURIDAD SEMIRRIGIDA
EJEMPLO DE ANCLAJE DEL EXTREMO INICIAL

PLANTA